• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Institute of Materials Science and Nanotechnology (UNAM)
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Institute of Materials Science and Nanotechnology (UNAM)
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Mussel inspired dynamic cross-linking of self-healing peptide nanofiber network

      Thumbnail
      View / Download
      898.5 Kb
      Author
      Ceylan, Hakan
      Urel, Mustafa
      Erkal, Turan S.
      Tekinay, Ayse B.
      Dana, Aykutlu
      Güler, Mustafa O.
      Date
      2013
      Source Title
      Advanced Functional Materials
      Print ISSN
      1616-301X
      Publisher
      Wiley
      Volume
      23
      Issue
      16
      Pages
      2081 - 2090
      Language
      English
      Type
      Article
      Item Usage Stats
      158
      views
      255
      downloads
      Abstract
      A general drawback of supramolecular peptide networks is their weak mechanical properties. In order to overcome a similar challenge, mussels have adapted to a pH-dependent iron complexation strategy for adhesion and curing. This strategy also provides successful stiffening and self-healing properties. The present study is inspired by the mussel curing strategy to establish iron cross-link points in self-assembled peptide networks. The impact of peptide-iron complexation on the morphology and secondary structure of the supramolecular nanofibers is characterized by scanning electron microscopy, circular dichroism and Fourier transform infrared spectroscopy. Mechanical properties of the cross-linked network are probed by small angle oscillatory rheology and nanoindentation by atomic force microscopy. It is shown that iron complexation has no influence on self-assembly and β-sheet-driven elongation of the nanofibers. On the other hand, the organic-inorganic hybrid network of iron cross-linked nanofibers demonstrates strong mechanical properties comparable to that of covalently cross-linked network. Strikingly, iron cross-linking does not inhibit intrinsic reversibility of supramolecular peptide polymers into disassembled building blocks and the self-healing ability upon high shear load. The strategy described here could be extended to improve mechanical properties of a wide range of supramolecular polymer networks. A simple and versatile method for improving mechanical performance of supramolecular polymers is described. Inspired by a mussel curing mechanism, reversible iron cross-linking into a self-assembled peptide network significantly enhances the mechanical properties while having no impact on the β-sheet-driven self-assembly. The network retains its pH-dependent reversibility and self-healing properties. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
      Permalink
      http://hdl.handle.net/11693/20998
      Published Version (Please cite this version)
      http://dx.doi.org/10.1002/adfm.201202291
      Collections
      • Aysel Sabuncu Brain Research Center (BAM) 183
      • Institute of Materials Science and Nanotechnology (UNAM) 1775
      • Nanotechnology Research Center (NANOTAM) 1006
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy