Smelling in chemically complex environments: an optofluidic bragg fiber array for differentiation of methanol adulterated beverages

Date
2013
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Analytical Chemistry
Print ISSN
0003-2700
Electronic ISSN
Publisher
American Chemical Society
Volume
85
Issue
13
Pages
6384 - 6391
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

A novel optoelectronic nose for analysis of alcohols (ethanol and methanol) in chemically complex environments is reported. The cross-responsive sensing unit of the optoelectronic nose is an array of three distinct hollow-core infrared transmitting photonic band gap fibers, which transmit a specific band of IR light depending on their Bragg mirror structures. The presence of alcohol molecules in the optofluidic core quenches the fiber transmissions if there is an absorption band of the analyte overlapping with the transmission band of the fiber; otherwise they remain unchanged. The cumulative response data of the fiber array enables rapid, reversible, and accurate discrimination of alcohols in chemically complex backgrounds such as beer and fruit juice. In addition, we observed that humidity of the environment has no effect on the response matrix of the optoelectronic nose, which is rarely achieved in gas-sensing applications. Consequently, it can be reliably used in virtually any environment without precalibration for humidity or drying the analytes. Besides the discussed application in counterfeit alcoholic beverages, with its superior sensor parameters, this novel concept proves to be a promising contender for many other applications including food quality control, environmental monitoring, and breath analysis for disease diagnostics. © 2013 American Chemical Society.

Course
Other identifiers
Book Title
Keywords
Citation
Published Version (Please cite this version)