• Submitter Login
    View Item 
    •   Bilkent Repository
    • University Centres and Units
    • Work in Progress
    • Bilkent University - Scopus Publications
    • Research Paper
    • View Item
    •   Bilkent Repository
    • University Centres and Units
    • Work in Progress
    • Bilkent University - Scopus Publications
    • Research Paper
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Nanoscale dielectric capacitors composed of graphene and boron nitride layers: A first-principles study of high capacitance at nanoscale

    Thumbnail
    View/Open
    Full printable version (1.406Mb)
    Date Issued
    2013
    Author
    Özçelik V.O.
    Ciraci, S.
    Show full item record
    Please cite this item using this persistent URL
    http://hdl.handle.net/11693/20889
    Journal
    Journal of Physical Chemistry C
    Published as
    http://dx.doi.org/10.1021/jp403706e
    Collections
    • Research Paper [7145]
    Abstract
    We investigate a nanoscale dielectric capacitor model consisting of two-dimensional, hexagonal h-BN layers placed between two commensurate and metallic graphene layers using self-consistent field density functional theory. The separation of equal amounts of electric charge of different sign in different graphene layers is achieved by applying an electric field perpendicular to the layers. The stored charge, energy, and the electric potential difference generated between the metallic layers are calculated from the first principles for the relaxed structures. Predicted high-capacitance values exhibit the characteristics of supercapacitors. The capacitive behavior of the present nanoscale model is compared with that of the classical Helmholtz model, which reveals crucial quantum size effects at small separations, which in turn recede as the separation between metallic planes increases. © 2013 American Chemical Society.

    BİLKENT UNIVERSITY

    Copyright © Bilkent University - Library Technical Services | 06800 Bilkent, Ankara TURKEY
    If you have trouble accessing this page and need to request an alternate format, contact the webmaster. Phone: (312) 290 1771

    Contact Us | Send Feedback | Off-Campus Access
     

    Browse

    All of BilkentCommunities & CollectionsTitleAuthorAdvisorIssue DateSubjectTypeDepartmentThis CollectionTitleAuthorAdvisorIssue DateSubjectTypeDepartment

    My Account

    Submitter Login

    Statistics

    View Usage Statistics

    BİLKENT UNIVERSITY

    Copyright © Bilkent University - Library Technical Services | 06800 Bilkent, Ankara TURKEY
    If you have trouble accessing this page and need to request an alternate format, contact the webmaster. Phone: (312) 290 1771

    Contact Us | Send Feedback | Off-Campus Access