• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Institute of Materials Science and Nanotechnology (UNAM)
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Institute of Materials Science and Nanotechnology (UNAM)
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Effects of charging and perpendicular electric field on the properties of silicene and germanene

      Thumbnail
      View / Download
      2.0 Mb
      Author
      Gürel, H. H.
      Özçelik, V. O.
      Çıracı, Salim
      Date
      2013
      Source Title
      Journal of Physics Condensed Matter
      Print ISSN
      1361-648X
      Publisher
      Institute of Physics Publishing
      Volume
      25
      Issue
      30
      Pages
      305007-1 - 305007-7
      Language
      English
      Type
      Article
      Item Usage Stats
      138
      views
      105
      downloads
      Abstract
      Using first-principles density functional theory calculations, we showed that electronic and magnetic properties of bare and Ti adatom adsorbed single-layer silicene and germanene, which are charged or subjected to a perpendicular electric field, can be modified to attain new functionalities. In particular, when subjected to a perpendicular electric field, buckled atoms have the symmetry between their planes broken, opening a gap at the Dirac points. The occupation of 3d orbitals of the adsorbed Ti atom changes with charging or applied electric field, inducing significant changes in magnetic moment. We predict neutral silicene uniformly covered by Ti atoms to become a half-metal at a specific value of coverage and hence allow the transport of electrons in one spin direction, but block the opposite direction. These calculated properties, however, exhibit a dependence on the size of the vacuum spacing between periodically repeating silicene and germanene layers, if they are treated using a plane wave basis set within periodic boundary conditions. We clarified the cause of this spurious dependence and show that it can be eliminated by the use of a local orbital basis set. © 2013 IOP Publishing Ltd.
      Permalink
      http://hdl.handle.net/11693/20882
      Published Version (Please cite this version)
      http://dx.doi.org/10.1088/0953-8984/25/30/305007
      Collections
      • Department of Physics 2299
      • Institute of Materials Science and Nanotechnology (UNAM) 1775
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy