• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Science
      • Department of Chemistry
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Science
      • Department of Chemistry
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Quantitatively correct UV-vis spectrum of ferrocene with TDB3LYP

      Thumbnail
      View / Download
      3.9 Mb
      Author
      Salzner, U.
      Date
      2013
      Source Title
      Journal of Chemical Theory and Computation
      Print ISSN
      1549-9618
      Electronic ISSN
      1549-9626
      Publisher
      American Chemical Society
      Volume
      9
      Issue
      9
      Pages
      4064 - 4073
      Language
      English
      Type
      Article
      Item Usage Stats
      61
      views
      81
      downloads
      Metadata
      Show full item record
      Abstract
      The ultraviolet-visible light (UV-vis) absorption spectrum of ferrocene is modeled with time-dependent density functional theory employing LSDA, BLYP, B3LYP, and CAM-B3LYP functionals in combination with 6-31G*, 6-31+G*, CC-PVTZ, and aug-CC-PVTZ basis sets. With the exception of LSDA, all functionals predict a reasonable Fe-CP distance of ∼1.67 Å. Diffuse functions are essential for the strongly allowed states at high energy but of lesser consequence for the visible range of the spectrum. Dipole forbidden states are examined with vibrationally excited structures, obtained from the normal modes of the infrared (IR) spectrum. Despite earlier claims, TDB3LYP predicts the UV-vis spectrum of ferrocene quantitatively correct. TDBLYP predicts a large number of spurious charge-transfer states, TDCAM-B3LYP and TDwB97XD are correct in the low-energy region but overestimate the energy of strongest peak of the spectrum by 0.8 eV. The amount of charge transfer involved in "d-d transitions" is equal to that in "charge-transfer states".
      Permalink
      http://hdl.handle.net/11693/20811
      Published Version (Please cite this version)
      http://dx.doi.org/10.1021/ct400322v
      Collections
      • Department of Chemistry 558

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University | Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin