Microcantilever based disposable viscosity sensor for serum and blood plasma measurements
Author
Cakmak O.
Elbuken, C.
Ermek, E.
Mostafazadeh, A.
Baris I.
Erdem Alaca, B.
Kavakli I.H.
Urey H.
Date
2013Source Title
Methods
Print ISSN
10462023
Volume
63
Issue
3
Pages
225 - 232
Language
English
Type
ArticleItem Usage Stats
128
views
views
224
downloads
downloads
Abstract
This paper proposes a novel method for measuring blood plasma and serum viscosity with a microcantilever-based MEMS sensor. MEMS cantilevers are made of electroplated nickel and actuated remotely with magnetic field using an electro-coil. Real-time monitoring of cantilever resonant frequency is performed remotely using diffraction gratings fabricated at the tip of the dynamic cantilevers. Only few nanometer cantilever deflection is sufficient due to interferometric sensitivity of the readout. The resonant frequency of the cantilever is tracked with a phase lock loop (PLL) control circuit. The viscosities of liquid samples are obtained through the measurement of the cantilever's frequency change with respect to a reference measurement taken within a liquid of known viscosity. We performed measurements with glycerol solutions at different temperatures and validated the repeatability of the system by comparing with a reference commercial viscometer. Experimental results are compared with the theoretical predictions based on Sader's theory and agreed reasonably well. Afterwards viscosities of different Fetal Bovine Serum and Bovine Serum Albumin mixtures are measured both at 23. °C and 37. °C, body temperature. Finally the viscosities of human blood plasma samples taken from healthy donors are measured. The proposed method is capable of measuring viscosities from 0.86. cP to 3.02. cP, which covers human blood plasma viscosity range, with a resolution better than 0.04. cP. The sample volume requirement is less than 150. μl and can be reduced significantly with optimized cartridge design. Both the actuation and sensing are carried out remotely, which allows for disposable sensor cartridges. © 2013 .
Keywords
BloodBlood Plasma
Cantilever
Magnetic actuation
MEMS
Microcantilever
Serum
Viscosity
bovine serum albumin
glycerol
article
blood sampling
body temperature
controlled study
disposable equipment
dynamics
human
magnetic field
plasma viscosity
priority journal
sensor
viscometer
viscometry
Bovinae
Blood
Blood Plasma
Cantilever
Magnetic actuation
MEMS
Microcantilever
Serum
Viscosity
Animals
Biosensing Techniques
Blood Viscosity
Cattle
Humans
Plasma
Serum
Permalink
http://hdl.handle.net/11693/20776Published Version (Please cite this version)
http://dx.doi.org/10.1016/j.ymeth.2013.07.009Collections
Related items
Showing items related by title, author, creator and subject.
-
In vitro biocompatibility of plasma-aided surface-modified 316L stainless steel for intracoronary stents
Bayram, C.; Mizrak, A.K.; Aktürk, S.; Kurşaklioǧlu H.; Iyisoy, A.; Ifran, A.; Denkbaş, E.B. (Institute of Physics Publishing, 2010)316L-type stainless steel is a raw material mostly used for manufacturing metallic coronary stents. The purpose of this study was to examine the chemical, wettability, cytotoxic and haemocompatibility properties of 316L ... -
Biological properties of extracellular vesicles and their physiological functions
Yáñez-Mó, M.; Siljander, P. R. M.; Andreu, Z.; Zavec, A. B.; Borràs, F. E.; Buzas, E. I.; Buzas, K.; Casal, E.; Cappello, F.; Carvalho, J.; Colás, E.; Cordeiro-Da, S. A.; Fais, S.; Falcon-Perez, J. M.; Ghobrial, I. M.; Giebel, B.; Gimona, M.; Graner, M.; Gursel, I.; Gursel, M.; Heegaard, N. H. H.; Hendrix, A.; Kierulf, P.; Kokubun, K.; Kosanovic, M.; Kralj-Iglic, V.; Krämer-Albers, E. M.; Laitinen, S.; Lässer, C.; Lener, T.; Ligeti, E.; Line, A.; Lipps, G.; Llorente, A.; Lötvall, J.; Manček-Keber, M.; Marcilla, A.; Mittelbrunn, M.; Nazarenko, I.; Nolte-'t Hoen, E. N. M.; Nyman, T. A.; O'Driscoll, L.; Olivan, M.; Oliveira, C.; Pállinger, E.; Del Portillo, H. A.; Reventós, J.; Rigau, M.; Rohde, E.; Sammar, M.; Sánchez-Madrid, F.; Santarém, N.; Schallmoser, K.; Ostenfeld, M. S.; Stoorvogel, W.; Stukelj, R.; Grein V. D. S.G.; Helena,ü V. M.; Wauben, M. H. M.; De Wever, O. (Taylor & Francis, 2015)In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and ... -
Circulating LL37 targets plasma extracellular vesicles to immune cells and intensifies Behçet's disease severity
Kahraman, T.; Gucluler, G.; Simsek, I.; Yagci, F. C.; Yildirim, M.; Ozen, C.; Dinc, A.; Gursel, M.; Ikromzoda, L.; Sutlu, T.; Gay, S.; Gursel, I. (Taylor and Francis, 2017-02)Behçet's disease (BD) activity is characterised by sustained, over-exuberant immune activation, yet the underlying mechanisms leading to active BD state are poorly defined. Herein, we show that the human cathelicidin derived ...