Chaotic behavior of gas bubble in non-Newtonian fluid: A numerical study
Author
Behnia, S.
Mobadersani F.
Yahyavi, M.
Rezavand, A.
Date
2013Source Title
Nonlinear Dynamics
Print ISSN
0924090X
Volume
74
Issue
3
Pages
559 - 570
Language
English
Type
ArticleItem Usage Stats
122
views
views
149
downloads
downloads
Abstract
In the present paper, the nonlinear behavior of bubble growth under the excitation of an acoustic pressure pulse in non-Newtonian fluid domain has been investigated. Due to the importance of the bubble in the medical applications such as drug, protein or gene delivery, blood is assumed to be the reference fluid. Effects of viscoelasticity term, Deborah number, amplitude and frequency of the acoustic pulse are studied. We have studied the dynamic behavior of the radial response of bubble using Lyapunov exponent spectra, bifurcation diagrams, time series and phase diagram. A period-doubling bifurcation structure is predicted to occur for certain values of the effects of parameters. The results show that by increasing the elasticity of the fluid, the growth phenomenon will be unstable. On the other hand, when the frequency of the external pulse increases the bubble growth experiences more stable condition. It is shown that the results are in good agreement with the previous studies. © 2013 Springer Science+Business Media Dordrecht.
Keywords
Bifurcation diagramsBubble dynamics
Chaotic oscillations
Deborah number
Lyapunov spectrum
Non-Newtonian fluids
Bifurcation diagram
Bubble dynamics
Chaotic oscillation
Deborah numbers
Lyapunov spectrum
Non-Newtonian fluids
Bifurcation (mathematics)
Bubbles (in fluids)
Elasticity
Flow measurement
Gene transfer
Lyapunov functions
Lyapunov methods
Medical applications
Non Newtonian liquids
Viscous flow
Rheology