X-ray photoelectron spectroscopic and in-situ infrared investigation of a Ru/SiO2 catalyst

Date
1997
Editor(s)
Advisor
Süzer, Şefik
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Bilkent University
Volume
Issue
Pages
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

A 4 wt% Ru/Si02 catalyst which was previously prepared via an incipient wetness technique using a ruthenium nitrosyl-nitrate [Ru(N0)(N03)3] solution and a commercially available precursor (ruthenium nitrosyl-nitrate) were used in this study. The activation of the catalyst was investigated by using Infrared (IR) spectroscopy together with X-ray photoelectron spectroscopy (XPS). Special emphasis has been given to the study of formation of active species during annealing of the precursor and the catalyst for comparison purposes. The in-situ IR measurements performed on the catalyst suggested a possible metal and support interaction. XPS experiments revealed mixed oxidation states in the case of annealing of the precursor whereas annealing did not cause any change in the oxidation state of Ru present in the catalyst which lead to the conclusion that the influence of support and interactions between the metal and support prevented any reduction by annealing only. Carbon monoxide adsorption on the reduced catalyst followed by IR spectroscopy was performed to investigate the nature of active adsorption sites. The complexity of the spectrum of chemisorbed CO suggested the presence of small metal particles. The presence of Ru"^ centers as well as reduced Ru centers showed that the catalyst was not fully reduced under these conditions. Using this catalyst ammonia synthesis was achieved at 350 °C in a N2/H2 gas mixture (N2/H2 =3:1) for different reaction times. In addition to observed NH3 as reaction product, the results showed that NH^ surface species might represent intermediates in the ammonia synthesis reaction on Ru/Si02. Carbon monoxide adsorption on the catalyst after NH3 synthesis was performed to investigate the change in nature of active sites after ammonia production when compared with the reduced sample. Based on the experimental observations, participation of Ru° sites in ammonia synthesis was confirmed and a partial oxidation of the reduced Ru sites during synthesis was observed.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)