• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Phonon anomalies in high temperature superconductors

      Thumbnail
      View / Download
      2.4 Mb
      Author
      Türeci, E Hakan
      Advisor
      Hakioğlu, Tuğrul
      Date
      1996
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      73
      views
      43
      downloads
      Abstract
      Anomalously large low temperature phonon anharmonicities can lead to static as well as dynamical changes in the low temperature properties of the vibrational system. In this work, we focus our attention on the low temperature lattice anharmonicity and its effect on the electron-phonon ground state. We are, in particular, motivated by certain high temperature superconductors. The third and fourth order anharmonic coupling constants for YBCO, LBCO and several other superconducting compounds are extracted from their measured elastic constants using the anharmonic elastic continuum model. The coupling constants are then used to extract the average anharmonic potential energy for the transverse and longitudinal modes in the Cu-0 planes. We find that, anharmonic contribution to the lattice potential relative to the harmonic one is unusually high for all examined high Tc compounds. The presence of anharmonic phonons elicits non-perturbative dynamical effects in the ground state of the electron-phonon system. Phonon correlations induced by anharmonic effects enhance the electron-phonon interaction which then create a self-consistent mechanism to act back on the ground state of the electron-phonón system. In result, strong momentum correlations are created and the ground state comprises fluctuating polarons. The zero point fluctuations and other ground state properties are obtained by self-consistent numerical calculations. The influence of low temperature phonon anharmonicity on the superconducting properties in the intermediate coupling range is also investigated. It is shown that, the otherwise bare electron-phonon coupling is strengthened in the presence of correlated polarons and the zero point fluctuations are enhanced. Within this frame, it is plausible to achieve superconducting transition temperatures as high as %20 of the characteristic vibrational energy scale. The non-perturbative, self-consistent formalism thus introduced also offers an account for the recently observed temperature anomalies near Tc in the Debye-Waller factor and dynamical pair correlations of certain high temperature superconductors.
      Keywords
      Phonon anharmonicity
      electron-phonon interaction
      Fröhlich Hamiltonian
      squeezed states
      polarons
      polarons
      high temperature superconductors
      elastic continuum theory
      Permalink
      http://hdl.handle.net/11693/17795
      Collections
      • Dept. of Physics - Master's degree 160
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy