• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Comparison of image space subdivision algorithms for parallel volume rendering

      Thumbnail
      View / Download
      8.6 Mb
      Author
      Tanin, Egemen
      Advisor
      Aykanat, Cevdet
      Date
      1995
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      70
      views
      21
      downloads
      Abstract
      In many scientific applications, results are presented as unstructured volumetric data sets. Direct Volume Rendering (DVR) is a powerful way of visualizing these volumetric data sets. However, it involves intensive computations. In addition, most of the volumetric data sets also require huge memories. Hence, DVR is a good candidate for parallelization on distributed memory multicomputers. Also most of the engineering simulations are done on multicomputers. Therefore, visualization of these results on the same architectures where simulations are done avoids the overhead of transporting large amount of data. In order to visualize unstructured volumetric data sets, the underlying algorithms should resolve the point location and the view sort problems of the 3D grid points. In this thesis, these problems are solved by using the well-known Scanline Z-Buffer algorithm. Three image space subdivision algorithms, namely horizontal, rectangular, and recursive subdivisions, are utilized to distribute the computations evenly among the processors in the rendering phase. The main parallel algorithm uses Raycasting approach of DVR to visualize the data sets, which is also an image space method. Therefore, the divisions are made in order to obtain a set of sub-images. Static task decomposition is used where each processor is assigned to a single sub-image. The load balance among the processors is achieved by defining the overall work load with in a sub-image by using the milestone operations done in the Scanline Z-Buffer algorithm. The algorithms are developed in a way that they can handle any kind of polygonal, volumetric, and etc. data set where the underlying architecture is also kept flexible in many aspects for the sake of generality and portability. The experimental performance evaluation of the horizontal, rectangular, and recursive subdivision algorithms on an IBM-SP2 system are presented and discussed in a comparative way.
      Keywords
      Direct volume rendering
      Direct volume rendering
      parallel algorithms
      distributed memory multicomputers
      Permalink
      http://hdl.handle.net/11693/17645
      Collections
      • Dept. of Computer Engineering - Master's degree 511
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy