• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Convection-reaction equation based magnetic resonance electrical properties tomography (cr-MREPT)

      Thumbnail
      View / Download
      2.8 Mb
      Author(s)
      Hafalır, Fatih Süleyman
      Advisor
      İder, Y. Ziya
      Date
      2013
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      229
      views
      202
      downloads
      Abstract
      Tomographic imaging of electrical conductivity and permittivity of tissues may be used for diagnostic purposes as well as for estimating local specific absorption rate (SAR) distributions. Magnetic Resonance Electrical Properties Tomography (MREPT) aims at noninvasively obtaining conductivity and permittivity images at RF frequencies of MRI systems. MREPT algorithms are based on measuring the B1 field which is perturbed by the electrical properties of the imaged object. In this study, the relation between the electrical properties and the measured B + 1 field is formulated, for the first time as, the well-known convection-reaction equation. The suggested novel algorithm, called “cr-MREPT”, is based on the solution of this equation, and in contrast to previously proposed algorithms, it is applicable in practice not only for regions where electrical properties are relatively constant but also for regions where they vary. The convection-reaction equation is solved using a triangular mesh based finite difference method and also finite element method (FEM). The convective field of the convection-reaction equation depends on the spatial derivatives of the B + 1 field. In the regions where the magnitude of convective field is low, a spot-like artifact is observed in the reconstructed conductivity and dielectric permittivity images. For eliminating this artifact, two different methods are developed, namely “constrained cr-MREPT” and “double-excitation cr-MREPT”. In the constrained cr-MREPT method, in the region where the magnitude of convective field is low, the electrical properties are reconstructed by neglecting the convective term in the equation. The obtained solution is used as a constraint for solving electrical properties in the whole domain. In the double-excitation cr-MREPT method, two B1 excitations, which create two convective field distributions having low magnitude of convective field in different locations, are applied separately. The electrical properties are then reconstructed simultaneously using data from these two applied B + 1 field. These methods are tested with both simulation and experimental data from phantoms. As seen from results, successful electrical property reconstructions are obtained in all regions including electrical property transition region. The performance of cr-MREPT method against noise is also investigated.
      Keywords
      B1 mapping
      conductivity imaging
      convection-reaction equation
      Magnetic Resonance Electrical Properties Tomography
      MREPT
      MREIT
      permittivity imaging
      quantitative MRI
      triangular mesh
      FEM
      Permalink
      http://hdl.handle.net/11693/17094
      Collections
      • Dept. of Electrical and Electronics Engineering - Master's degree 655
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy