• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Incorporating the surfing behavior of web users into PageRank

      Thumbnail
      View / Download
      5.3 Mb
      Author(s)
      Ashyralyyev, Shatlyk
      Advisor
      Aykanat, Cevdet
      Date
      2013
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      178
      views
      117
      downloads
      Abstract
      One of the most crucial factors that determines the effectiveness of a large-scale commercial web search engine is the ranking (i.e., order) in which web search results are presented to the end user. In modern web search engines, the skeleton for the ranking of web search results is constructed using a combination of the global (i.e., query independent) importance of web pages and their relevance to the given search query. In this thesis, we are concerned with the estimation of global importance of web pages. So far, to estimate the importance of web pages, two different types of data sources have been taken into account, independent of each other: hyperlink structure of the web (e.g., PageRank) or surfing behavior of web users (e.g., BrowseRank). Unfortunately, both types of data sources have certain limitations. The hyperlink structure of the web is not very reliable and is vulnerable to bad intent (e.g., web spam), because hyperlinks can be easily edited by the web content creators. On the other hand, the browsing behavior of web users has limitations such as, sparsity and low web coverage. In this thesis, we combine these two types of feedback under a hybrid page importance estimation model in order to alleviate the above-mentioned drawbacks. Our experimental results indicate that the proposed hybrid model leads to better estimation of page importance according to an evaluation metric that uses the user click information obtained from Yahoo! web search engine’s query logs as ground-truth ranking. We conduct all of our experiments in a realistic setting, using a very large scale web page collection (around 6.5 billion web pages) and web browsing data (around two billion web page visits) collected through the Yahoo! toolbar.
      Keywords
      Page quality
      Web search
      Ranking
      PageRank
      BrowseRank
      Permalink
      http://hdl.handle.net/11693/17013
      Collections
      • Dept. of Computer Engineering - Master's degree 540
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy