Plasmonic nanoantennas for enhanced light-matter interactions and graphene based tunable nanophotonic devices

Date
2015
Editor(s)
Advisor
Özbay, Ekmel
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Bilkent University
Volume
Issue
Pages
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Focusing, manipulating and beaming of electromagnetic waves are important for many applications such as antennas, optical isolators, biological sensor, chemical sensors, and solar cells. There is an extensive research about the manipulation of light, and its interaction with di erent types of materials including subwavelength structures. However, manipulating light at the nanoscale has many di culties due to the di raction limit. In this thesis, we mainly focus on the characterization and experiments of subwavelength plasmonic structures. We investigated the spatial distribution of the electric eld through subwavelength slits by using symmetric and non-symmetric periodic metallic grating structures in order to obtain one-way transmission, o -axis beaming, collimation and diode-like beaming. We also studied various plasmonic structures such as circular rings and fractal bowtie antennas. After combining them with Raman active molecules, we showed that these plasmonic structures can be used as e cient surface enhanced Raman spectroscopy substrates. Finally, we designed, fabricated and measured nanoantennas and split ring resonators on graphene in order to tune their optical response using the electrically controllable doping property of the graphene.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)