• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Graduate Program in Materials Science and Nanotechnology
      • Graduate Program in Materials Science and Nanotechnology - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Graduate Program in Materials Science and Nanotechnology
      • Graduate Program in Materials Science and Nanotechnology - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Experimental study of critical casimir forces on microparticles in critical binary liquid mixtures

      Thumbnail
      View / Download
      5.2 Mb
      Author(s)
      Tuna, Yazgan
      Advisor
      Volpe, Giovanni
      Date
      2014
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      122
      views
      42
      downloads
      Abstract
      Long-ranged forces between mesoscopic objects emerge when a fluctuating field is confined. Analogously to the well known quantum-electro-dynamical (QED) Casimir forces, emerging between conducting objects due to the confinement of the vacuum electromagnetic fluctuations, critical Casimir forces emerge between objects due to confinement of the fluid density fluctuations. Here, we studied experimentally several novel aspects and applications of critical Casimir fluctuations in a critical mixture of walter-2,6-lutidine, which are a promising candidate to harness forces and interactions at mesoscopic and nanoscopic lengthscales and promise to deliver results of both fundamental and applied interest. In particular, we studied the critical Casimir forces between multiple objects and multiple-body effects. We first extended the experimental study of critical Casimir forces in configurations different from the particle-wall system[1]. The forces acting between two particles in far from any surface and the third particle effect were explored. Then we employed multiple reconfigurable holographic optical tweezers (HOTs) which permit to optically trap several colloids and used a technique known as ”digital video microscopy” (DVM) to track the particles’ trajectories and the forces acting on the particles. We studied the critical Casimir force arising between two particles as a function of their distance and investigated how this is affected by the presence of a third neighboring particle.
      Keywords
      Critical Fluctuations
      Critical Casimir Forces
      Quantum-electrodynamical Casimir Forces
      Force Measurement
      Optical Tweezers
      Photonic Force Microscopy
      Digital Video Microscopy
      Permalink
      http://hdl.handle.net/11693/15993
      Collections
      • Graduate Program in Materials Science and Nanotechnology - Master's degree 162
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy