• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Ald grown zno as an alternative material for plasmonic and uncooled infrared imaging applications

      Thumbnail
      View / Download
      9.6 Mb
      Author
      Kesim, Yunus Emre
      Advisor
      Okyay, Ali Kemal
      Date
      2014
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      108
      views
      27
      downloads
      Abstract
      Plasmonics is touted as a milestone in optoelectronics as this technology can form a bridge between electronics and photonics, enabling the integration of electronics and photonic circuits at the nanoscale. Noble metals such as gold and silver have been extensively used for plasmonic applications due to their ability to support plasmons, yet they suffer from high intrinsic optical losses. Recently, there is an increased effort in the search for alternative plasmonic materials including Si, Ge, III-Nitrides and transparent conductive oxides. The main appeal of these materials, most of them semiconductors, is their lower optical losses, especially in the infrared (IR) regime, compared to noble metals owing to their lower number of free electrons. Other advantages can be listed as low-cost and control on plasma frequency thanks to the tunable electron concentration, i.e. effective doping level. This work focuses on atomic layer deposition (ALD) grown ZnO as a candidate material for plasmonic applications. Optical constants of ZnO are investigated along with figures of merit pertaining to plasmonic waveguides. It is shown that ZnO can alleviate the trade-off between propagation length and mode confinement width owing to tunable dielectric properties. In order to demonstrate plasmonic resonances, a grating structure is simulated using finite-difference-time-domain (FDTD) method and an ultra-wide-band (4-15 µm) infrared absorber is computationally demonstrated. Finally, an all ZnO microbolometer is proposed, where ALD grown ZnO is employed as both the thermistor and the absorber of the microbolometer which is an uncooled infrared imaging unit that relies on the resistance change of the active material (thermistor) as it heats up due to the absorption of incident electromagnetic radiation. The material complexity and process steps of microbolometers could be reduced if the thermistor layer and the absorber layer were consolidated in a single layer. Computational analysis of a basic microbolometer structure using FDTD method is conducted in order to calculate the absorptivity in the long-wave infrared (LWIR) region (8-12 µm). In addition, thermal simulations of the microbolometer structure are conducted using finite element method, and time constant and noise-equivalent-temperature-difference (NETD) values are extracted.
      Keywords
      Plasmonics
      Alternative Plasmonic Materials
      Transparent Conductive Oxides
      Metal Oxides
      ZnO
      Atomic Layer Deposition
      FDTD Method
      Uncooled İnfrared İmaging
      Microbolometer
      All-ZnO Microbolometer
      Permalink
      http://hdl.handle.net/11693/15978
      Collections
      • Dept. of Electrical and Electronics Engineering - Master's degree 596
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy