Show simple item record

dc.contributor.advisorBarker, Laurence J.
dc.contributor.authorBüyükçolak, Yasemin
dc.date.accessioned2016-01-08T18:27:22Z
dc.date.available2016-01-08T18:27:22Z
dc.date.issued2013
dc.identifier.urihttp://hdl.handle.net/11693/15953
dc.descriptionAnkara : The Department of Mathematics and the Graduate School of Engineering and Science of Bilkent University, 2013.en_US
dc.descriptionThesis (Master's) -- Bilkent University, 2013.en_US
dc.descriptionIncludes bibliographical references leaves 68-70.en_US
dc.description.abstractWe discuss the canonical induction formula for some special Mackey functors by following the construction of Boltje. These functors are the ordinary and modular character rings and the trivial source rings. Making use of a natural correspondence between the Mackey algebra and the finite algebra spanned by the three kinds of basic bisets, namely the conjugation, restriction and induction, we investigate the canonical induction formula in terms of the theory of bisets. We focus on the trivial source rings and the canonical induction formula for them. The main aim is to get an explicit formula for the canonical induction of regular bimodules in the trivial source. This gives a first step towards for the canonical induction of blocks.en_US
dc.description.statementofresponsibilityBüyükçolak, Yaseminen_US
dc.format.extentvii, 70 leavesen_US
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCanonical inductionen_US
dc.subjectregular bimodulesen_US
dc.subjectmonomial ringen_US
dc.subjecttrivial source ringen_US
dc.subjectMackey functoren_US
dc.subjectbiset functoren_US
dc.subject.lccQA169 .B89 2013en_US
dc.subject.lcshFunctor theory.en_US
dc.subject.lcshInduction (Mathematics)en_US
dc.subject.lcshRings (Algebra)en_US
dc.titleCanonical induction for trivial source ringsen_US
dc.typeThesisen_US
dc.departmentDepartment of Mathematicsen_US
dc.publisherBilkent Universityen_US
dc.description.degreeM.S.en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record