• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Deterministic and stochastic error modeling of inertial sensors and magnetometers

      Thumbnail
      View / Download
      11.3 Mb
      Author(s)
      Seçer, Görkem
      Advisor
      Barshan, Billur
      Date
      2012
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      197
      views
      84
      downloads
      Abstract
      This thesis focuses on the deterministic and stochastic modeling and model parameter estimation of two commonly employed inertial measurement units. Each unit comprises a tri-axial accelerometer, a tri-axial gyroscope, and a tri-axial magnetometer. In the first part of the thesis, deterministic modeling and calibration of the units are performed, based on real test data acquired from a flight motion simulator. The deterministic modeling and identification of accelerometers is performed based on a traditional model. A novel technique is proposed for the deterministic modeling of the gyroscopes, relaxing the test bed requirement and enabling their in-use calibration. This is followed by the presentation of a new sensor measurement model for magnetometers that improves the calibration error by modeling the orientation-dependent magnetic disturbances in a gimbaled angular position control machine. Model-based Levenberg-Marquardt and modelfree evolutionary optimization algorithms are adopted to estimate the calibration parameters of sensors. In the second part of the thesis, stochastic error modeling of the two inertial sensor units is addressed. Maximum likelihood estimation is employed for estimating the parameters of the different noise components of the sensors, after the dominant noise components are identified. Evolutionary and gradient-based optimization algorithms are implemented to maximize the likelihood function, namely particle swarm optimization and gradient-ascent optimization. The performance of the proposed algorithm is verified through experiments and the results are compared to the classical Allan variance technique. The results obtained with the proposed approach have higher accuracy and require a smaller sample data size, resulting in calibration experiments of shorter duration. Finally, the two sensor units are compared in terms of repeatability, present measurement noise, and unaided navigation performance.
      Keywords
      Inertial sensors
      deterministic error modeling
      stochastic error modeling
      in-field calibration
      Levenberg-Marquardt algorithm
      particle swarm optimization
      gradient-ascent optimization
      Allan variance
      maximum likelihood estimation
      Permalink
      http://hdl.handle.net/11693/15811
      Collections
      • Dept. of Electrical and Electronics Engineering - Master's degree 655
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy