• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Tuning the exciton-plasmon coupling

      Thumbnail
      View / Download
      3.4 Mb
      Author(s)
      Ateş, Simge
      Advisor
      Aydınlı, Atilla
      Date
      2012
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      170
      views
      92
      downloads
      Abstract
      Exciton-plasmon coupling has recently drawn much interest. In this work, FDTD simulations of exciton-plasmon coupling in plasmonic cavity structures with corrugation patterns are investigated. Excitonic modes are obtained from a Lorentz absorber modeling of a J-aggregate organic dye. The coupling of these excitonic and plasmonic modes on Ag thin films is demonstrated. Rabi splitting due to coupling was clearly observed. Flat metallic surfaces, uniform gratings and Moiré surfaces are used in simulations as corrugation patterns. Metal film thickness and dye concentration dependence of Rabi splitting via exciton-plasmon coupling was also observed on thin flat Ag films. We show that Rabi splitting occurs even at low dye concentrations, and the magnitude of splitting increases as dye concentration increases. A new state in the band gap is observed when the total oscillator strength is increased. Large Rabi splitting is observed when plasmon damping is modulated. Exciton-plasmon coupling on uniform gratings is studied as a function of cavity size, corrugation periodicity and depth. Q factor and Rabi splitting behavior of excitonplasmon coupling on Moiré cavities are investigated as a function of cavity size. Strong anti-crossing is observed when the excitonic absorption matches with the cavity state.
      Keywords
      Exciton-Plasmon Coupling
      Plasmonic Cavities
      J-aggregates
      Rabi Splitting
      Permalink
      http://hdl.handle.net/11693/15798
      Collections
      • Dept. of Physics - Master's degree 170
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the User and Access Services. Phone: (312) 290 1298
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy