• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Minimizing communication through computational redundancy in parallel iterative solvers

      Thumbnail
      View / Download
      644.3 Kb
      Author
      Torun, Fahreddin Şükrü
      Advisor
      Aykanat, Cevdet
      Date
      2011
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      74
      views
      47
      downloads
      Abstract
      Sparse matrix vector multiplication (SpMxV) of the form y = Ax is a kernel operation in iterative linear solvers used in scientific applications. In these solvers, the SpMxV operation is performed repeatedly with the same sparse matrix through iterations until convergence. Depending on the matrix and its decomposition, parallel SpMxV operation necessitates communication among processors in the parallel environment. The communication can be reduced by intelligent decomposition. However, we can further decrease the communication through data replication and redundant computation. The communication occurs due to the transfer of x-vector entries in row-parallel SpMxV computation. The input vector x of the next iteration is computed from the output vector of the current iteration through linear vector operations. Hence, a processor may compute a y-vector entry redundantly, which leads to a x-vector entry in the following iteration, instead of receiving that x-vector entry from another processor. Thus, redundant computation of that y-vector entry may lead to reduction in communication. In this thesis, we devise a directed-graph-based model that correctly captures the computation and communication pattern for above-mentioned iterative solvers. Moreover, we formulate the communication minimization by utilizing redundant computation of y-vector entries as a combinatorial problem on this directed graph model. We propose two heuristics to solve this combinatorial problem. Experimental results indicate that the communication reducing strategy by redundantly computing is promising.
      Keywords
      Sparse matrix vector multiplication
      Sparse matrix
      Parallel
      Replication
      Iterative solvers
      Permalink
      http://hdl.handle.net/11693/15774
      Collections
      • Dept. of Computer Engineering - Master's degree 511
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy