• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Ph.D. / Sc.D.
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Ph.D. / Sc.D.
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Exciton harvesting systems of nanocrystals

      Thumbnail
      View / Download
      8.6 Mb
      Author
      Mutlugün, Evren
      Advisor
      Demir, Hilmi Volkan
      Date
      2011
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      80
      views
      25
      downloads
      Abstract
      Semiconductor nanocrystals, also known as colloidal quantum dots, have gained substantial scientific interest for innovative light harvesting applications including those in biolabeling. Organic dyes and fluorescent proteins are widely used in biotargeting and live cell imaging, but their intrinsic optical properties, such as narrow excitation windows, limit their potential for advanced applications, e.g., spectral multiplexing. Compared to these organic fluorophores, favorable properties of the quantum dots including high photoluminescence quantum yields together with tunable emission peaks and narrow spectral emission widths, high extinction coefficients, and broad absorption bands enable us to discover and innovate light harvesting composites. In such systems, however, the scientific challenge is to achieve high levels of energy transfer from one species to the other, with additional features of versatility and tunability. To address these problems, as a conceptual advancement, this thesis proposes and demonstrates a new class of versatile light harvesting systems of semiconductor nanocrystals mediated by excitonic interactions based on Förstertype nonradiative energy transfer. In this thesis, we synthesized near-unity efficiency colloidal quantum dots with as-synthesized photoluminescence quantum yields of >95%. As proof-of-concept demonstrations, we studied and achieved highly efficient exciton harvesting systems of quantum dots bound to fluorescent proteins, where the excitons are zipped from the dots to the proteins in the composite. This led to many folds of light harvesting (tunable up to 15 times) in the case of the green fluorescent protein. Using organic dye molecules electrostatically interacting with quantum dots, we showed high levels of exciton migration from the dots to the molecules (up to 94%). Furthermore, we demonstrated stand-alone, flexible membranes of nanocrystals in unprecedentedly large areas (> 50 cm × 50 cm), which paves the way for highend, large-scale applications. In the thesis, we also developed exciton-exciton coupling models to support the experimental results. This thesis opens up new possibilities for exciton-harvesting in biolabeling and optoelectronics.
      Keywords
      Semiconductor nanocrystals
      nonradiative energy transfer
      excitons
      light harvesting
      Permalink
      http://hdl.handle.net/11693/15770
      Collections
      • Dept. of Physics - Ph.D. / Sc.D. 73
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy