• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      3D dynamic modeling of spherical wheeled self-balancing mobile robot

      Thumbnail
      View / Download
      1.2 Mb
      Author
      İnal, Ali Nail
      Advisor
      Morgül, Ömer
      Date
      2012
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      154
      views
      59
      downloads
      Abstract
      In recent years, dynamically stable platforms that move on spherical wheels, also known as BallBots, gained popularity in the robotics literature as an alternative locomotion method to statically stable wheeled mobile robots. In contrast to wheeled platforms which do not have to explicitly be concerned about their balance, BallBot platforms must be informed about their dynamics and actively try to maintain balance. Up until now, such platforms have been approximated by simple planar models, with extensions to three dimensions through the combination of decoupled models in orthogonal sagittal planes. However, even though capturing certain aspects of the robot’s motion is possible with such decoupled models, they cannot represent inherently spatial aspects of motion such as yaw rotation or coupled inertial effects due to the motion of the rigid body. In this thesis, we introduce a novel, fully-coupled 3D model for such spherical wheeled balancing platforms. We show that our novel model captures important spatial aspects of motion that have previously not been captured by planar models. Moreover, our new model provides a better basis for controllers that are informed by more expressive system dynamics. In order to establish the expressivity and accuracy of this new model, we present simulation studies in dynamically rich situations. We use circular paths to reveal the advantages of the new model for fast maneuvers. Additionally, we introduce new inverse-dynamics controllers for a better attitude control and investigate within simulations the capability of sustaining dynamic behaviors. We study the relation between circular motions in attitude angles and associated motions in positional variables for BallBot locomotion.
      Keywords
      Dynamic Modeling
      Balancing Mobile Robots
      Underactuated Systems
      Dynamic System Control
      Attitude Control
      Permalink
      http://hdl.handle.net/11693/15673
      Collections
      • Dept. of Electrical and Electronics Engineering - Master's degree 594
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy