• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Restricted Neyman-Pearson approach based spectrum sensing in cognitive radio systems

      Thumbnail
      View / Download
      605.4 Kb
      Author(s)
      Turgut, Esma
      Advisor
      Gezici, Sinan
      Date
      2012
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      146
      views
      40
      downloads
      Abstract
      Over the past decade, the demand for wireless technologies has increased enormously, which leads to a perceived scarcity of the frequency spectrum. Meanwhile, static allocation of the frequency spectrum leads to under-utilization of the spectral resources. Therefore, dynamic spectrum access has become a necessity. Cognitive radio has emerged as a key technology to solve the conflicts between spectrum scarcity and spectrum under-utilization. It is an intelligent wireless communication system that is aware of its operating environment and can adjust its parameters in order to allow unlicensed (secondary) users to access and communicate over the frequency bands assigned to licensed (primary) users when they are inactive. Therefore, cognitive radio requires reliable spectrum sensing techniques in order to avoid interference to primary users. In this thesis, the spectrum sensing problem in cognitive radio is studied. Specifically, the restricted Neyman-Pearson (NP) approach, which maximizes the average detection probability under the constraints on the minimum detection and false alarm probabilities, is applied to the spectrum sensing problem in cognitive radio systems in the presence of uncertainty in the prior probability distribution of primary users’ signals. First, we study this problem in the presence of Gaussian noise and assume that primary users’ signals are Gaussian. Then, the problem is reconsidered for non-Gaussian noise channels. Simulation results are obtained in order to compare the performance of the restricted NP approach with the existing methods such as the generalized likelihood ratio test (GLRT) and energy detection. The restricted NP approach outperforms energy detection in all cases. It is also shown that the restricted NP approach can provide important advantages over the GLRT in terms of the worst-case detection probability, and sometimes in terms of the average detection probability depending on the situation in the presence of imperfect prior information for Gaussian mixture noise channels.
      Keywords
      Cognitive radio
      detection
      spectrum sensing
      Neyman-Pearson
      Permalink
      http://hdl.handle.net/11693/15523
      Collections
      • Dept. of Electrical and Electronics Engineering - Master's degree 621
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy