• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Graduate Program in Materials Science and Nanotechnology
      • Graduate Program in Materials Science and Nanotechnology - Ph.D. / Sc.D.
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Graduate Program in Materials Science and Nanotechnology
      • Graduate Program in Materials Science and Nanotechnology - Ph.D. / Sc.D.
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Frictional and vibrational properties of nanostructures

      Thumbnail
      View / Download
      18.1 Mb
      Author(s)
      Cahangirov, Seymur
      Advisor
      Çıracı, Salim
      Date
      2012
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      353
      views
      171
      downloads
      Abstract
      Frictional and vibrational properties of low-dimensional nanostructures have been investigated using the state-of-the-art ab-initio calculations. Stringent test of stability based on calculation of phonon dispersions have been performed for various materials having important potential applications in nanoscience and nanotechnology. Silicene, a counterpart of graphene composed of silicon atoms, is one of such materials with its suitability to well established silicon technology together with eccentric electronic structure due to its honeycomb symmetry. Vibrational spectrum of silicene is found to be exempt from imaginary frequencies upon the puckering of atoms in adjacent sublattices while preserving the symmetry necessary for occurrence of massless Dirac Fermions. Analyses of vibrational properties of silicene nanoribbons and carbon atomic chains revealed new interesting physics like fourth acoustical mode and long-ranged interactions due to Friedel oscillations. Basic concepts of friction science like dissipation phenomena, adiabatic and sudden processes together with several simple models of friction have been summarized. A new method for calculation of corrugation potential between layered lubricants under constant loading pressure is introduced. Transition from stickslip to continuous sliding regime is quantified through definition of frictional figure of merit for layered lubricants. Using this measure tungsten oxide is proposed as an oxidation resistant material which can outperform molybdenum disulfide as a superlubricant. It was found that, the corrugation strengths of graphene layers sandwiched between Ni slabs decrease as the number of layers increase.
      Keywords
      phonon
      stability
      silicene
      friction
      dissipation
      sudden process
      Permalink
      http://hdl.handle.net/11693/15486
      Collections
      • Graduate Program in Materials Science and Nanotechnology - Ph.D. / Sc.D. 80
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy