• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Human activity classification with miniature inertial sensors

      Thumbnail
      View / Download
      4.1 Mb
      Author(s)
      Tunçel, Orkun
      Advisor
      Barshan, Billur
      Date
      2009
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      193
      views
      49
      downloads
      Abstract
      This thesis provides a comparative study on activity recognition using miniature inertial sensors (gyroscopes and accelerometers) and magnetometers worn on the human body. The classification methods used and compared in this study are: a rule-based algorithm (RBA) or decision tree, least-squares method (LSM), k-nearest neighbor algorithm (k-NN), dynamic time warping (DTW- 1 and DTW-2), and support vector machines (SVM). In the first part of this study, eight different leg motions are classified using only two single-axis gyroscopes. In the second part, human activities are classified using five sensor units worn on different parts of the body. Each sensor unit comprises a tri-axial gyroscope, a tri-axial accelerometer and a tri-axial magnetometer. Different feature sets extracted from the raw sensor data and these are used in the classification process. A number of feature extraction and reduction techniques (principal component analysis) as well as different cross-validation techniques have been implemented and compared. A performance comparison of these classification methods is provided in terms of their correct differentiation rates, confusion matrices, pre-processing and training times and classification times. Among the classification techniques we have considered and implemented, SVM, in general, gives the highest correct differentiation rate, followed by k-NN. The classification time for RBA is the shortest, followed by SVM or LSM, k-NN or DTW-1, and DTW-2 methods. SVM requires the longest training time, whereas DTW-2 takes the longest amount of classification time. Although there is not a significant difference between the correct differentiation rates obtained by different crossvalidation techniques, repeated random sub-sampling uses the shortest amount of classification time, whereas leave-one-out requires the longest.
      Keywords
      inertial sensors
      gyroscope
      accelerometer
      magnetometer
      human activity recognition
      motion classification
      pattern recognition
      feature
      principal component analysis
      cross-validation
      rule-based algorithm
      decision tree
      leastsquares method
      k-nearest neighbor
      dynamic time warping
      support vector machines
      Permalink
      http://hdl.handle.net/11693/15415
      Collections
      • Dept. of Electrical and Electronics Engineering - Master's degree 655
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy