• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Chemistry
      • Dept. of Chemistry - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Chemistry
      • Dept. of Chemistry - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Investigation of two new lyotropic liquid crystalline systems : [Zn (formula) and [Zn (formula)

      Thumbnail
      View / Download
      1.6 Mb
      Author
      Albayrak, Cemal
      Advisor
      Dağ, Ömer
      Date
      2008
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      89
      views
      37
      downloads
      Abstract
      The transition metal aqua complex salts (TMS) can be dissolved in oligo (ethylene oxide) type non-ionic surfactants (CnH2n+1(CH2CH2O)mOH, denoted as CnEOm) with very high salt/surfactant ratios to form lyotropic liquid crystalline (LLC) mesophases. In this study we show that addition of charged surfactants, such as cethyltrimethylammoniumbromide (CTAB) or sodiumdodecylsulfate (SDS) results a new type of LLC in which the solubility of the salts in the LC mesophase of TMS: C12EO10 is enhanced. The LC phase of a [Zn(H2O)6](NO3)2:C12EO10 is hexagonal between 1.2 and 3.2 and cubic (liquid like) above 3.2 salt/ C12EO10 mole ratios. Addition of CTAB or SDS increases the same salt/surfactant mole ratio to 8.0-9.0, which is a record salt amount for a lyotropic liquid crystalline system. The mixed surfactant mesophases have birefringent hexagonal mesophase between 2.0 and 8.0 salt/C12EO10 mole ratios The new mixed surfactant systems can also accomodate high TMSs in the presence of excessive amounts of water (35.0 water:C12EO10 mole ratio). Both systems have similar thermal properties. Izotropisation Temperature (IT) values of the new systems go down with increasing salt and charged surfactant concentrations. The mesophases are stable at high salt concentrations in the presence of high CTAB or SDS concentration in the expense of the stability of the LLC mesophase. The IT values changes from around 80o C down to 32o C with increasing composition of the LLC mesophase. The new mesophase have 2D or 3D hexagonal structure that responds to water content of the phase. A 3D hexagonal phase transforms to 2D hexagonal phase with the evaporation of excess water in both [Zn(H2O)6](NO3)2:C12EO10-CTAB-H2O and [Zn(H2O)6](NO3)2:C12EO10-SDS-H2O systems. The new mesophases were investigated using POM (Polarised optical microscope), and a hot stage under the POM, XRD (X-ray Diffraction), FT-IR (Fourier Transform Infrared Spectroscopy) and Raman techniques. These new LLC systems are good candidates for metal containing mesostructured material synthesis due to their high salt content.
      Keywords
      Transition metal aqua complex salts
      Izotropisation Temperature
      Lyotropic liquid crystals
      Hexagonal and cubic mesophases
      Mixed Surfactants
      CTAB
      SDS
      C12EO10
      Permalink
      http://hdl.handle.net/11693/15376
      Collections
      • Dept. of Chemistry - Master's degree 129
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy