• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Ph.D. / Sc.D.
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Ph.D. / Sc.D.
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Development of new array signal processing techniques using swarm intelligence

      Thumbnail
      View / Download
      2.3 Mb
      Author(s)
      Güldoğan, Mehmet Burak
      Advisor
      Arıkan, Orhan
      Date
      2010
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      180
      views
      66
      downloads
      Abstract
      In this thesis, novel array signal processing techniques are proposed for identifi- cation of multipath communication channels based on cross ambiguity function (CAF) calculation, swarm intelligence and compressed sensing (CS) theory. First technique detects the presence of multipath components by integrating CAFs of each antenna output in the array and iteratively estimates direction-of-arrivals (DOAs), time delays and Doppler shifts of a known waveform. Second technique called particle swarm optimization-cross ambiguity function (PSO-CAF) makes use of the CAF calculation to transform the received antenna array outputs to delay-Doppler domain for efficient exploitation of the delay-Doppler diversity of the multipath components. Clusters of multipath components are identified by using a simple amplitude thresholding in the delay-Doppler domain. PSO is used to estimate parameters of the multipath components in each cluster. Third proposed technique combines CS theory, swarm intelligence and CAF computation. Performance of standard CS formulations based on discretization of the multipath channel parameter space degrade significantly when the actual channel parameters deviate from the assumed discrete set of values. To alleviate this “off-grid”problem, a novel technique by making use of the PSO, that can also be used in applications other than the multipath channel identification is proposed. Performances of the proposed techniques are verified both on sythetic and real data.
      Keywords
      Parameter estimation
      cross ambiguity function (CAF)
      particle swarm optimization (PSO)
      compressed sensing (CS)
      sparse approximation
      Permalink
      http://hdl.handle.net/11693/15321
      Collections
      • Dept. of Electrical and Electronics Engineering - Ph.D. / Sc.D. 168
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the User and Access Services. Phone: (312) 290 1298
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy