• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Adaptive control of a one-legged hopping robot through dynamically embedded spring-loaded inverted pendulum template

      Thumbnail
      View / Download
      5.8 Mb
      Author
      Uyanık, İsmail
      Advisor
      Morgül, Ömer
      Date
      2011
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      161
      views
      91
      downloads
      Abstract
      Practical realization of model-based dynamic legged behaviors is substantially more challenging than statically stable behaviors due to their heavy dependence on second-order system dynamics. This problem is further aggravated by the dif- ficulty of accurately measuring or estimating dynamic parameters such as spring and damping constants for associated models and the fact that such parameters are prone to change in time due to heavy use and associated material fatigue. In the first part of this thesis, we present an on-line, model-based adaptive control method for running with a planar spring-mass hopper based on a once-per-step parameter correction scheme. Our method can be used both as a system identifi- cation tool to determine possibly time-varying spring and damping constants of a miscalibrated system, or as an adaptive controller that can eliminate steady-state tracking errors through appropriate adjustments on dynamic system parameters. We use Spring-Loaded Inverted Pendulum (SLIP) model, which is the mostly used, effective and accurate descriptive tool for running animals of different sizes and morphologies, to evaluate our algorithm. We present systematic simulation studies to show that our method can successfully accomplish both accurate tracking and system identification tasks on this model. Additionally, we extend our simulations to Torque-Actuated Dissipative Spring-Loaded Inverted Pendulum (TD-SLIP) model towards its implementation on an actual robot platform. In the second part of the thesis, we present the design and construction of a onelegged hopping robot we built to test the practical applicability of our adaptive control algorithm. We summarize the mechanical, electronics and software design of our robot as well as the performed system identification studies to calibrate the unknown system parameters. Finally, we investigate the robot’s motion achieved by a simple torque-actuated open loop controller.
      Keywords
      Spring-Mass Hopper
      Adaptive Control
      System Identification
      Legged Locomotion
      Spring-Loaded Inverted Pendulum (SLIP)
      Hybrid System
      Permalink
      http://hdl.handle.net/11693/15278
      Collections
      • Dept. of Electrical and Electronics Engineering - Master's degree 594
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy