• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Ph.D. / Sc.D.
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Ph.D. / Sc.D.
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Caching techniques for large scale web search engines

      Thumbnail
      View / Download
      2.8 Mb
      Author(s)
      Özcan, Rıfat
      Advisor
      Ulusoy, Özgür
      Date
      2011
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      191
      views
      54
      downloads
      Abstract
      Large scale search engines have to cope with increasing volume of web content and increasing number of query requests each day. Caching of query results is one of the crucial methods that can increase the throughput of the system. In this thesis, we propose a variety of methods to increase the efficiency of caching for search engines. We first provide cost-aware policies for both static and dynamic query result caches. We show that queries have significantly varying costs and processing cost of a query is not proportional to its frequency (popularity). Based on this observation, we develop caching policies that take the query cost into consideration in addition to frequency, while deciding which items to cache. Second, we propose a query intent aware caching scheme such that navigational queries are identified and cached differently from other queries. Query results are cached and presented in terms of pages, which typically includes 10 results each. In navigational queries, the aim is to reach a particular web site which would be typically listed at the top ranks by the search engine, if found. We argue that caching and presenting the results of navigational queries in this 10-per-page manner is not cost effective and thus we propose alternative result presentation models and investigate the effect of these models on caching performance. Third, we propose a cluster based storage model for query results in a static cache. Queries with common result documents are clustered using single link clustering algorithm. We provide a compact storage model for those clusters by exploiting the overlap in query results. Finally, a five-level static cache that consists of all cacheable data items (query results, part of index, and document contents) in a search engine setting is presented. A greedy method is developed to determine which items to cache. This method prioritizes items for caching based on gains computed using items’ past frequency, estimated costs, and storage overheads. This approach alsoconsiders the inter-dependency between items such that caching of an item may affect the gain of items that are not cached yet. We experimentally evaluate all our methods using a real query log and document collections. We provide comparisons to corresponding baseline methods in the literature and we present improvements in terms of throughput, number of cache misses, and storage overhead of query results.
      Keywords
      Search engine
      navigational queries
      cost-aware caching
      caching techniques
      Permalink
      http://hdl.handle.net/11693/15258
      Collections
      • Dept. of Computer Engineering - Ph.D. / Sc.D. 84
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy