• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Mechanical Engineering
      • Dept. of Mechanical Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Mechanical Engineering
      • Dept. of Mechanical Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Development of a supervisory controller for energy management problems

      Thumbnail
      View / Download
      2.0 Mb
      Author
      Akgün, Emre
      Advisor
      Çakmakcı, Melih
      Date
      2011
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      90
      views
      28
      downloads
      Abstract
      Multi energy source systems, like hybrid electric vehicles in automotive industry, started to attract attention as a remedy for the greenhouse gas emission problem. Although their environmental performances are better than conventional technologies such as the case of gasoline vehicles versus hybrid electric vehicles in automotive industry, their operational management can be challenging due to their increased complexity. One of these challenges is the operational management of the energy flow among these multiple sources and sinks which in this context referred as the energy management problem. In this thesis, a supervisory controller is developed to operate at a residential environment with multiple energy sources. First, dynamic optimization techniques are applied to the available mathematical models of the multi-energy sources to create a non-causal optimal controller. Then, a set of implementable rules are extracted by analyzing the optimal trajectories resulted from the dynamic optimization to create a causal supervisory controller. Several simulations are conducted with Matlab/Simulink to validate the developed controller. The supervisory controller achieves not only a daily cost reduction between 6-7.5% compared to conventional energy infrastructure used in residential areas but also performs 2% better than heuristic control techniques available in the literature. Another simulation study is conducted, with different demand cycles, for verification of the controller. Although its performance reduces as expected, it still performs 1% better than heuristic control strategies. In the final part of this thesis, the formulation used in the residential problem which was originally adopted from an example in automotive industry, is generalized so that it can be used in all types of energy management problems. Finally, for exemplary purposes, a formulation for energy management problem in mobile devices is created by using the developed generic formulation.
      Keywords
      Energy Management
      Dynamic Programming
      Supervisory Control
      Permalink
      http://hdl.handle.net/11693/15234
      Collections
      • Dept. of Mechanical Engineering - Master's degree 66
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy