Sulfur tolerance of Fe promoted BaO/Al2O3 systems as NOx storage materials
Author(s)
Advisor
Özensoy, EmrahDate
2011Publisher
Bilkent University
Language
English
Type
ThesisItem Usage Stats
201
views
views
49
downloads
downloads
Abstract
Ternary mixed oxide systems in the form of BaO/FeOx/Al2O3 were studied
with varying compositions as an alternative to the conventional NOx storage
materials (i.e. BaO/Al2O3). NOx uptake properties of the freshly prepared samples,
sulfur adsorption and NOx storage in the presence of sulfur were investigated in order
to elucidate the sulfur tolerance of these advanced NOx storage systems in
comparison to their conventional counterparts.
The structural characterization of the poisoned NOx storage materials was
analyzed by means of scanning electron microscopy (SEM).
The performance and sulfur tolerance of these materials upon SOx adsorption
were monitored by in-situ Fourier transform infrared (FTIR) spectroscopy,
temperature programmed desorption (TPD) and X-Ray Photoelectron Spectroscopy
(XPS).
Addition of FeOx domains to the conventional BaO/Al2O3 system was
observed to introduce additional NOx storage sites and tends to increase the total NOx
uptake capacity.
SO2+O2 adsorption on the investigated samples was found to lead to the
formation of sulfites at low temperatures which are converted into surface and bulk
sulfates with increasing temperatures. After annealing at 1173 K in vacuum most of the sulfates can be removed from the surface and the samples can be regenerated.
However, for Fe/Ba/Al samples formation of various highly-stable sulfite and sulfate
species were also observed which survive on the surface even after annealing at
elevated temperatures (1173 K).
Sulfur poisoning on 5(10)Fe/8Ba/Al samples leads to preferential poisoning
of the FeOx, Al2O3 and surface BaO sites where bulk BaO sites seems to be more
tolerant towards sulfur poisoning. In contrast, sulfur poisoning occurs in a rather
non-preferential manner on the 5(10)Fe/20Ba/Al samples influencing all of the NOx
storage sites.
Thermal stability of the sulfate species seem to increase in the following
order: surface alumina sulfates < surface Ba sulfates ≈ Fe sulfates < bulk Ba sulfates
≈ bulk alumina sulfates < highly stable sulfates and sulfites on Fe/Ba/Al surfaces.
In overall, it can be argued that the Fe promotion has a positive influence on
the NOx storage capacity as well as a positive effect on the sulfur tolerance when the
Ba loading is equal to 8 wt% (i.e. 5(10)Fe/8Ba/Al). For these samples, even the
surface uptakes more SOx than conventional 8Ba/Al system, NOx uptake properties
as well as thermal regeneration properties seem slightly improved. On the other
hand, for higher Ba loadings (i.e. 5(10)Fe/20Ba/Al) Fe promotion has a minor
positive effect on NOx uptake capacity and SOx tolerance for 5 wt% Fe promotion
while 10 wt% Fe promotion seems to have no positive influence.
Keywords
NSRNOx storage materials
y-Al2O3
Ba/Al
Fe/Ba/Al
SOx poisoning
FTIR spectroscopy
TPD
XPS and SEM-EDX