• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Balance preserving min-cut replication set for a K-way hypergraph partitioning

      Thumbnail
      View / Download
      345.5 Kb
      Author
      Yazıcı, Volkan
      Advisor
      Aykanat, Cevdet
      Date
      2010
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      79
      views
      21
      downloads
      Abstract
      Replication is a widely used technique in information retrieval and database systems for providing fault-tolerance and reducing parallelization and processing costs. Combinatorial models based on hypergraph partitioning are proposed for various problems arising in information retrieval and database systems. We consider the possibility of using vertex replication to improve the quality of hypergraph partitioning. In this study, we focus on the Balance Preserving Min-Cut Replication Set (BPMCRS) problem, where we are initially given a maximum replication capacity and a K-way hypergraph partition with an initial imbalance ratio. The objective in the BPMCRS problem is finding optimal vertex replication sets for each part of the given partition such that the initial cutsize of the partition is improved as much as possible and the initial imbalance is either preserved or reduced under the given replication capacity constraint. In order to address the BPMCRS problem, we propose a model based on a unique blend of coarsening and integer linear programming (ILP) schemes. This coarsening algorithm is based on the Dulmage-Mendelsohn decomposition. Experiments show that the ILP formulation coupled with the Dulmage-Mendelsohn decomposition-based coarsening provides high quality results in feasible execution times for reducing the cost of a given K-way hypergraph partition.
      Keywords
      Partitioning
      Hypergraph partitioning
      Replication
      Permalink
      http://hdl.handle.net/11693/15156
      Collections
      • Dept. of Computer Engineering - Master's degree 511
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy