• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Industrial Engineering
      • Dept. of Industrial Engineering - Ph.D. / Sc.D.
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Industrial Engineering
      • Dept. of Industrial Engineering - Ph.D. / Sc.D.
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pricing and hedging of contingent claims in incomplete markets

      Thumbnail
      View / Download
      461.6 Kb
      Author
      Camcı, Ahmet
      Advisor
      Pınar, Mustafa Ç.
      Date
      2010
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      80
      views
      477
      downloads
      Abstract
      In this thesis, we analyze the problem of pricing and hedging contingent claims in the multi-period, discrete time, discrete state case. We work on both European and American type contingent claims. For European contingent claims, we analyze the problem using the concept of a “λ gain-loss ratio opportunity”. Pricing results which are somewhat different from, but reminiscent of, the arbitrage pricing theorems of mathematical finance are obtained. Our analysis provides tighter price bounds on the contingent claim in an incomplete market, which may converge to a unique price for a specific value of a gain-loss preference parameter imposed by the market while the hedging policies may be different for different sides of the same trade. The results are obtained in the simpler framework of stochastic linear programming in a multiperiod setting. They also extend to markets with transaction costs. Until now, determining the buyer’s price for American contingent claims (ACC) required solving an integer program unlike European contingent claims for which solving a linear program is sufficient. We show that a relaxation of the integer programming problem which is a linear program, can be used to get the buyer’s price for an ACC. We also study the problem of computing the lower hedging price of an American contingent claim in a market where proportional transaction costs exist. We derive a new mixed-integer linear programming formulation for calculating the lower hedging price. We also present and discuss an alternative, aggregate formulation with similar properties. Our results imply that it might be optimal for the holder of several identical American claims to exercise portions of the portfolio at different time points in the presence of proportional transaction costs while this incentive disappears in their absence. We also exhibit some counterexamples for some new ideas based on our work. We believe that these counterexamples are important in determining the direction of research on the subject.
      Keywords
      Contingent Claim
      Mixed Integer Programming
      Stochastic Linear Programming
      Transaction Cost
      Arbitrage
      Hedging
      Option Pricing
      Permalink
      http://hdl.handle.net/11693/15084
      Collections
      • Dept. of Industrial Engineering - Ph.D. / Sc.D. 45
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy