• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Industrial Engineering
      • Dept. of Industrial Engineering - Ph.D. / Sc.D.
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Industrial Engineering
      • Dept. of Industrial Engineering - Ph.D. / Sc.D.
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Continuous time control of make-to-stock production systems

      Thumbnail
      View / Download
      994.6 Kb
      Author(s)
      Bulut, Önder
      Advisor
      Fadıloğlu, M. Murat
      Date
      2010
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      161
      views
      48
      downloads
      Abstract
      We consider the problem of production control and stock rationing in a make-tostock production system with multiple servers –parallel production channels--, and several customer classes that generate independent Poisson demands. At decision epochs, in conjunction with the stock allocation decision, the control specifies whether to increase the number of operational servers or not. Previously placed production orders cannot be cancelled. We both study the cases of exponential and Erlangian processing times and model the respective systems as M /M /s and M /Ek /s make-to-stock queues. We characterize properties of the optimal cost function, and of the optimal production and rationing policies. We show that the optimal production policy is a state-dependent base-stock policy, and the optimal rationing policy is of state-dependent threshold type. For the M /M /s model, we also prove that the optimal ordering policy transforms into a bang-bang type policy when we relax the model by allowing order cancellations. Another model with partial ordercancellation flexibility is provided to fill the gap between the no-flexibility and the full-flexibility models. Furthermore, we propose a dynamic rationing policy for the systems with uncapacitated replenishment channels, i.e., exogenous supply systems. Such systems can be modeled by letting s --the number of replenishment channels-- go to infinity. The proposed policy utilizes the information on the status of the outstanding replenishment orders. This work constitutes a significant extension of the literature in the area of control of make-to-stock queues, which considers only a single server. We consider an arbitrary number of servers that makes it possible to cover the spectrum of the cases from the single server to the infinite servers. Hence, our work achieves to analyze both the exogenous and endogenous supply leadtimes.
      Keywords
      Inventory
      Simulation
      Optimal Control
      Multiple Demand Classes
      Multiple Servers
      Make-toStock
      Dynamic Rationing
      Stock Rationing
      Production
      Permalink
      http://hdl.handle.net/11693/15061
      Collections
      • Dept. of Industrial Engineering - Ph.D. / Sc.D. 50
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy