• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Rotating two leg Bose Hubbard ladder

      Thumbnail
      View / Download
      1.4 Mb
      Author
      Keleş, Ahmet
      Advisor
      Oktel, Mehmet Özgür
      Date
      2009
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      74
      views
      28
      downloads
      Abstract
      We analyze two leg Bose Hubbard model under uniform magnetic field within various methods. Before studying the model, we discuss the background on rotating Bose Einstein condensates, Bose Hubbard model and superfluid Mott insulator transition. We give a general overview of Density Matrix Renormalization Group (DMRG) theory and show some of the applications. Introducing two leg system Hamiltonian, we solve the single particle problem and find distinct structures above and belove a critical magnetic field αc = 0.21π. Above this value of the field, it is found that system has travelling wave solutions. To see the effects of interactions, we use Gross Pitaevskii approximation. Spectrum of the system below the critical field and the change of αc with the interaction strength are obtained for small interactions, i.e Un/t < 1. To specify Mott insulator boundary, variational mean field theory and strong coupling perturbation (SCP) theories are used. The travelling wave solutions found in single particle spectrum above αc is found to be persistent in mean field description. On the other hand, comparing with the strong coupling expansion results, it has been found that the mean field theory gives poor results, because of the one dimensional structure of the system. The change of the tip of the lobe where BKT transition takes place is found as a function of magnetic field by SCP. Finally we use DMRG to obtain the exact shape of the phase diagram. It is found that second order strong coupling perturbation theory gives very good results. System is found to display reenterant phase to Mott insulator. Looking at the infinite onsite interaction limit via DMRG, the critical value of the magnetic field is found to be exactly equal to the single particle solution. We have calculated the particle-hole gap for various fillings and different magnetic fields and found Fractional Quantum Hall like behaviors.
      Keywords
      Bose-Hubbard Model
      Strongly Correlated Systems
      Renormalization
      Superfluid-Mott Insulator Transition
      Permalink
      http://hdl.handle.net/11693/14961
      Collections
      • Dept. of Physics - Master's degree 160
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy