• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Bias voltage control of a molecular spin valve

      Thumbnail
      View / Download
      1.8 Mb
      Author
      Can, Duygu
      Advisor
      Çıracı, Salim
      Date
      2009
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      81
      views
      21
      downloads
      Abstract
      With the discovery of giant magneto resistance a new field called spintronics is emerged. Utilizing spin-degree of freedom of the electron as well as its charge, high-speed devices which consumes low energy can be designed. One of the main concerns of spintronics is creating spin polarized currents. Half-metallic materials, which conduct electrons of one spin state but behave as an insulator for the other spin state, are ideal candidates for this purpose. In a way they function as spinvalves, and the current passing through these materials will be spin polarized. The half-metallic property of periodic atomic chains of carbon-transition metal compounds and spin-valve property of transition metal caped finite carbon linear chains motivated our study. In this work, we analyzed the spin dependent transport properties of CrCnCr atomic chains. We connected the magnetic CrCnCr molecules to appropriate electrodes and studied their electronic and magnetic properties under applied bias. All the calculations are carried out using a method which combines density functional theory (DFT) with non-equilibrium Green’s function (NEGF) technique. For CrCnCr molecules with odd n we observed cumulenic bond lengths, while the C−C bonds are in polyynic nature for even n. In these structures Cr atoms induce net magnetic moments on C atoms. The magnetic moment on Cr atoms favors anti-parallel (AF) alignment for even n and parallel (FM) alignment for odd n. This situation is inverted when the molecules are connected to the electrodes. Two-probe conductance calculations of such systems reveal that their conductance properties are also n dependent. Finite bias voltages which create non-equilibrium conditions within the device region, causes the spin-degenerate molecular levels of the device to be separated from each other. Then conductance properties of the device become spin dependent. We observe that the ground state CrCnCr two-probe systems with odd n changes from AF to FM at a critical voltage. Thus, we have a spinvalve which is initially in ”off-state” turned on with applied bias. We achieved to control spin-polarization of the current transmitted through a molecular spinvalve with applied bias voltage. We showed that they are molecular analogues of GMR devices. These molecular spin-valve devices function without any need of an external magnetic field as it is required in conventional GMR devices.
      Keywords
      molecular electronics
      ballistic conductance
      transition metal atom
      carbon linear chain
      quantum transport
      spintronics
      Permalink
      http://hdl.handle.net/11693/14959
      Collections
      • Dept. of Physics - Master's degree 160
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy