Doppler frequency estimation in pulse doppler radar systems

Date
2009
Editor(s)
Advisor
Gezici, Sinan
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Bilkent University
Volume
Issue
Pages
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Pulse Doppler radar systems are one of the most common types of radar systems, especially in military applications. These radars are mainly designed to estimate two basic parameters of the targets, range and Doppler frequency. A common procedure of estimating those parameters is matched filtering, followed by pulse Doppler processing, and finally one of the several constant false alarm rate (CFAR) algorithms. However, because of the structure of the waveform obtained after pulse Doppler processing, CFAR algorithms cannot always find the Doppler frequency of a target accurately. In this thesis, two different algorithms, maximum selection and successive cancelation, are proposed and their performances are compared with the optimal maximum likelihood (ML) solution. These proposed algorithms both utilize the advantage of knowing the waveform structure of a point target obtained after pulse Doppler processing in the Doppler frequency domain. Maximum selection basically chooses the Doppler frequency cells with the largest amplitudes to be the ones where there is a target. On the other hand, successive cancelation is an iterative algorithm. In each iteration, it finds a target that minimizes a specific cost function, until there are no more targets. The performances of these algorithms are investigated for several different point target scenarios. Moreover, the performances of the algorithms are tested on some realistic target models. Based on all those observations, it is concluded that maximum selection is a good choice for high SNR values when a low-complexity algorithm is needed, on the other hand, successive cancelation performs almost as well as the optimal solution at all SNR values.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)