• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      An USB-based real-time communication infrastructure for robotic platforms

      Thumbnail
      View / Download
      835.5 Kb
      Author
      Öztürk, Cihan
      Advisor
      Saranlı, Uluç
      Date
      2009
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      60
      views
      583
      downloads
      Abstract
      A typical robot operates by carrying out a sequence of tasks, usually consisting of acquisition of sensory data, interpretation of sensory inputs for making decisions, and application of commands on appropriate actuators. Since this cycle involves transmission of data among electro-mechanical components of the robot, high quality communication is a fundamental requirement. Besides being reliable, robust, extensible, and efficient, a high quality communication infrastructure should satisfy all additional communication requirements that are specific to the robot it is used within. To give an example, for a rapid moving autonomous robot with a reactive controller which is intended to be used in time critical situations, a real-time communication infrastructure which guarantees demanded response times is required. The Universal Robot Bus (URB) is a distributed communication framework based on the widely used I2C standard, intended to be used specifically within rapid autonomous robots. Real-time operation guarantees are provided by defining upper bounds in response times. URB facilitates exchange of information between a central controller and distributed sensory and actuator units. Adoption of a centralized topology by connecting distributed units directly to a central controller creates a bottleneck around the central unit, causing problems in scalability, noise and cabling. In order to overcome this problem, URB is physically realized such that gateways (bridges) are incorporated between the central and distributed units which offload the work of the central unit and master the underlying I2C bus. Connection between the central unit and the gateway, the uplink channel, can be established using any high bandwidth communication alternative which successfully satisfies communication requirements of the system. The main contribution of this thesis is the design and implementation of the URB uplink channel using the well known Universal Serial Bus (USB) protocol. Although true real-time operation is not feasible with USB due to its polling mechanism, USB frame scheduling of 1ms is acceptable for our application domain. In this thesis, hardware components used in the USB uplink implementation as well as our software implementation are covered in detail. These details include the firmware running on the gateway, a Linux based device driver and a client control software that uses a USB library running on central controller, and finally sub-protocols between the application-driver and driver-firmware layers. The thesis also includes our experiments to estimate the performance of the USB uplink in terms of its roundtrip latency, bandwidth, scalability, robustness, and reliability. Finally, this thesis also serves as a reference on distributed systems, device driver development, Linux kernel programming, communication protocols, USB and its usage in real-time applications.
      Keywords
      USB
      Real-time communication
      Distributed systems
      URB
      Permalink
      http://hdl.handle.net/11693/14944
      Collections
      • Dept. of Computer Engineering - Master's degree 508
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy