• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Ph.D. / Sc.D.
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Ph.D. / Sc.D.
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Modeling interestingness of streaming association rules as a benefit maximizing classification problem

      Thumbnail
      View / Download
      445.9 Kb
      Author(s)
      Aydın, Tolga
      Advisor
      Güvenir, Halil Altay
      Date
      2009
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      118
      views
      94
      downloads
      Abstract
      In a typical application of association rule learning from market basket data, a set of transactions for a fixed period of time is used as input to rule learning algorithms. For example, the well-known Apriori algorithm can be applied to learn a set of association rules from such a transaction set. However, learning association rules from a set of transactions is not a one-time only process. For example, a market manager may perform the association rule learning process once every month over the set of transactions collected through the previous month. For this reason, we will consider the problem where transaction sets are input to the system as a stream of packages. The sets of transactions may come in varying sizes and in varying periods. Once a set of transactions arrives, the association rule learning algorithm is run on the last set of transactions, resulting in a new set of association rules. Therefore, the set of association rules learned will accumulate and increase in number over time, making the mining of interesting ones out of this enlarging set of association rules impractical for human experts. We refer to this sequence of rules as “association rule set stream” or “streaming association rules” and the main motivation behind this research is to develop a technique to overcome the interesting rule selection problem. A successful association rule mining system should select and present only the interesting rules to the domain experts. However, definition of interestingness of association rules on a given domain usually differs from one expert to the other and also over time for a given expert. In this thesis, we propose a post-processing method to learn a subjective model for the interestingness concept description of the streaming association rules. The uniqueness of the proposed method is its ability to formulate the interestingness issue of association rules as a benefit-maximizing classification problem and obtain a different interestingness model for each user. In this new classification scheme, the determining features are the selective objective interestingness factors, including the rule’s content itself, related to the interestingness of the association rules; and the target feature is the interestingness label of those rules. The proposed method works incrementally and employs user interactivity at a certain level. It is evaluated on a real supermarket dataset. The results show that the model can successfully select the interesting ones.
      Keywords
      Interestingness learning
      data mining
      association rules
      classification learning
      incremental learning
      Permalink
      http://hdl.handle.net/11693/14877
      Collections
      • Dept. of Computer Engineering - Ph.D. / Sc.D. 75
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      LoginRegister

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy