• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Ph.D. / Sc.D.
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Ph.D. / Sc.D.
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Antenna analysis

      Thumbnail
      View / Download
      3.0 Mb
      Author(s)
      Tunç, Celal Alp
      Advisor
      Altıntaş, Ayhan
      Date
      2009
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      207
      views
      42
      downloads
      Abstract
      Multiple-input-multiple-output (MIMO) wireless communication systems have been attracting huge interest, since a boost in the data rate was shown to be possible, using multiple antennas both at the transmitter and receiver. It is obvious that the electromagnetic effects of the multiple antennas have to be included in the wireless channel for an accurate system design, though they are often neglected by the early studies. In this thesis, the MIMO channel is investigated from an electromagnetics point of view. A full-wave channel model based on the method of moments solution of the electric field integral equation is developed and used in order to evaluate the MIMO channel matrix accurately. The model is called the channel model with electric fields (MEF) and it calculates the exact fields via the radiation integrals, and hence, it is rigorous except the random scatterer environment. The accuracy of the model is further verified by the measurement results. Thus, it is concluded that MEF achieves the accuracy over other approaches which are incapable of analyzing antenna effects in detail. Making use of the presented technique, MIMO performance of printed dipole arrays is analyzed. Effects of the electrical properties of printed dipoles on the MIMO capacity are explored in terms of the relative permittivity and thickness of the dielectric material. Appropriate dielectric slab configurations yielding high capacity printed dipole arrays are presented. The numerical efficiency of the technique (particularly for freestanding and printed dipoles) allows analyzing MIMO performance of arrays with large number of antennas, and high performance array design in conjunction with well-known optimization tools. Thus, MEF is combined with particle swarm optimization (PSO) to design MIMO arrays of dipole elements for superior capacity. Freestanding and printed dipole arrays are analyzed and optimized, and the adaptive performance of printed dipole arrays in the MIMO channel is investigated. Furthermore, capacity achieving input covariance matrices for different types of arrays are obtained numerically using PSO in conjunction with MEF. It is observed that, moderate capacity improvement is possible for small antenna spacing values where the correlation is relatively high, mainly utilizing nearly full or full covariance matrices. Otherwise, the selection of the diagonal covariance is almost the optimal solution.MIMO performance of printed rectangular patch arrays is analyzed using a modified version of MEF. Various array configurations are designed, manufactured, and their MIMO performance is measured in an indoor environment. The channel properties, such as the power delay profile, mean excess delay and delay spread, are obtained via measurements and compared with MEF results. Very good agreement is achieved.
      Keywords
      MIMO
      optimal input covariance
      indoor MIMO measurements
      particle swarm optimization (PSO)
      microstrip patch arrays
      microstrip dipole arrays
      planar printed arrays
      mutual coupling
      method of moments (MoM)
      Permalink
      http://hdl.handle.net/11693/14871
      Collections
      • Dept. of Electrical and Electronics Engineering - Ph.D. / Sc.D. 167
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy