• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Ph.D. / Sc.D.
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Ph.D. / Sc.D.
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      On the strain in silicon nanocrystals

      Thumbnail
      View / Download
      2.3 Mb
      Author(s)
      Yılmaz, Dündar
      Advisor
      Bulutay, Ceyhun
      Date
      2009
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      83
      views
      20
      downloads
      Abstract
      In this Thesis we present our achievements towards an understanding of atomistic strain mechanisms and interface chemistry in silicon nanocrystals. The structural control of silicon nanocrystals embedded in amorphous oxide is currently an important technological problem. First, our initial attempt is described to simulate the structural behavior of silicon nanocrystals embedded in amorphous oxide matrix based on simple valence force fields as described by Keatingtype potentials. Next, the interface chemistry of silicon nanocrystals (NCs) embedded in amorphous oxide matrix is studied through molecular dynamics simulations with the chemical environment being governed by the reactive force field model. Our results indicate that the Si NC-oxide interface is more involved than the previously proposed schemes which were based on solely simple bridge or double bonds. We identify different types of three-coordinated oxygen complexes, previously not noted. The abundance and the charge distribution of each oxygen complex is determined as a function of the NC size as well as the transitions among them. Strain has a crucial effect on the optical and electronic properties of nanostructures. We calculate the atomistic strain distribution in silicon NCsup to a diameter of 3.2 nm embedded in an amorphous silicon dioxide matrix. A seemingly conflicting picture arises when the strain field is expressed in terms of bond lengths versus volumetric strain. The strain profile in either case shows uniform behavior in the core, however it becomes nonuniform within 2- 3 ˚A distance to the NC surface: tensile for bond lengths whereas compressive for volumetric strain. We reconcile their coexistence by an atomistic strain analysis. Vibrational density of states (VDOS) affects the optical properties of Si-NCs. VDOS obtained by calculating velocity autocorrelation function (VACF) using velocities of the atoms is extracted from the molecular dynamics simulations. The information on bonding topology enables classification of atoms in the system with respect to their neighbor atoms. With help of this information we separate contributions of different type of atoms to the VDOS. Calculating VACF of different type of atoms such as surface atoms and core atoms of nanocrystal, to the system facilitates understanding of the effects of strain fields and interface chemistry to the VDOS.
      Keywords
      silicon
      vibrational spectra
      simulation
      monte carlo
      molecular dynamics
      strain
      interface
      nanocrystal
      Permalink
      http://hdl.handle.net/11693/14867
      Collections
      • Dept. of Physics - Ph.D. / Sc.D. 73
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      LoginRegister

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy