• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pose sentences : a new representation for understanding human actions

      Thumbnail
      View / Download
      3.2 Mb
      Author
      Hatun, Kardelen
      Advisor
      Duygulu, Pınar
      Date
      2008
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      72
      views
      17
      downloads
      Abstract
      In this thesis we address the problem of human action recognition from video sequences. Our main contribution to the literature is the compact use of poses while representing videos and most importantly considering actions as pose-sentences and exploit string matching approaches for classification. We focus on single actions, where the actor performs one simple action through the video sequence. We represent actions as documents consisting of words, where a word refers to a pose in a frame. We think pose information is a powerful source for describing actions. In search of a robust pose descriptor, we make use of four well-known techniques to extract pose information, Histogram of Oriented Gradients, k-Adjacent Segments, Shape Context and Optical Flow Histograms. To represent actions, first we generate a codebook which will act as a dictionary for our action dataset. Action sequences are then represented using a sequence of pose-words, as posesentences. The similarity between two actions are obtained using string matching techniques. We also apply a bag-of-poses approach for comparison purposes and show the superiority of pose-sentences. We test the efficiency of our method with two widely used benchmark datasets, Weizmann and KTH. We show that pose is indeed very descriptive while representing actions, and without having to examine complex dynamic characteristics of actions, one can apply simple techniques with equally successful results.
      Keywords
      Human motion
      Action recognition
      String matching
      Bag-of-words
      Permalink
      http://hdl.handle.net/11693/14772
      Collections
      • Dept. of Computer Engineering - Master's degree 516
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy