• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Electronic structure of graphene nano-ribbons

      Thumbnail
      View / Download
      1.0 Mb
      Author
      Şen, Hüseyin Şener
      Advisor
      Gülseren, Oğuz
      Date
      2008
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      95
      views
      48
      downloads
      Abstract
      Graphite is a known material to human kind for centuries as the lead of a pencil. Graphene as a two dimensional material, is the single layer of graphite. Many theoretical works have been done about it so far, however, it newer took attention as it takes nowadays. In 2004, Novoselov et al. was able to produce graphene in 2D. Now that, making experiments on graphene is possible scientists have to renew their theoretical knowledge about systems in two dimension because graphene, due to its electronic structure, is able to prove the ideas in quantum relativistic phenomena. Indeed, recent theoretical studies were able to show that, electrons and holes behave as if they are massless fermions moving at a speed about 106m/s (c/300, c being speed of light) due to the linear electronic band dispersion near K points in the brillouin zone which was observed experimentally as well. Having zero band gap, graphene cannot be used directly in applications as a semiconductor. Graphene Nano-Ribbons (GNRs) are finite sized graphenes. They can have band gaps differing from graphene, so they are one of the new candidates for band gap engineering applications such as field effect transistors. This work presents theoretical calculation of the band structures of Graphene NanoRibbons in both one (infinite in one dimension) and zero dimensions (finite in both dimensions) with the help of tight binding method. The calculations were made for Zigzag, Armchair and Chiral Graphene Nano-Ribbons (ZGNR,AGNR,CGNR) in both 1D and 0D. Graphene nano-ribbons with zero band gap (ZGNR and AGNR) are observed in the calculations as well as the ribbons with finite band gaps (AGNR and CGNR) which increase with the decrease in the size of the ribbon making them much more suitable and strong candidate to replace silicon as a semiconductor.
      Keywords
      Graphene
      chiral vector
      chiral angle
      quantum confinement
      0D
      1D
      CGNR
      ZGNR
      AGNR
      band gap
      hydrogen saturation of dangling bonds
      electronic structure
      tight binding
      nano-ribbon
      Permalink
      http://hdl.handle.net/11693/14755
      Collections
      • Dept. of Physics - Master's degree 160
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy