• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Scene classification using bag-of-regions representation

      Thumbnail
      View / Download
      3.8 Mb
      Author
      Gökalp, Demir
      Advisor
      Aksoy, Selim
      Date
      2007
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      88
      views
      43
      downloads
      Abstract
      Significant growth of multimedia data creates the need for more complicated approaches in image understanding, classification and retrieval. Semantic scene classification is a popular research area which categorizes images into semantic categories for applications like content based image retrieval. In the near future, content based image retrieval will be much more important especially for the next generation internet technologies so new approaches are very welcomed in this subject. Research has showed that classifying images using components like regions, pixels or objects is a challenging work because of the ambiguity of the visual data. The main idea about image classification is to find similarities between these components to get information about the content of the image. This thesis describes our work on classification of outdoor scenes. As the first step, regions are extracted using one-class classification and patch-based clustering algorithms. The components (pixels, regions and objects) in outdoor images have particular spatial and geometric interactions so dividing images into meaningfully clustered regions has important benefits for a detailed content analysis. For region clustering, features from different levels make specific contributions but to avoid the ambiguity, we need to use low level information and more global information together for the clustering step. Also, using spatial relationships between clustered regions, we can make inference about the detailed content of outdoor images from specific to general. Therefore, after rough segmentation, scene representations are constructed with and without spatial information. At the final step Bayesian classification approach is used with the two different scene representations. The developed methods were tested on the MIT LabelMe dataset, and the results showed that using regions and their spatial relationships improved the classification accuracy.
      Keywords
      Semantic scene classification
      Region segmentation
      Image understanding
      Permalink
      http://hdl.handle.net/11693/14559
      Collections
      • Dept. of Computer Engineering - Master's degree 511
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy