• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Algorithms for effective querying of graph-based pathway databases

      Thumbnail
      View / Download
      4.1 Mb
      Author(s)
      Çetintaş, Ahmet
      Advisor
      Doğrusöz, Uğur
      Date
      2007
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      150
      views
      156
      downloads
      Abstract
      As the scientific curiosity shifts toward system-level investigation of genomicscale information, data produced about cellular processes at molecular level has been accumulating with an accelerating rate. Graph-based pathway ontologies and databases have been in wide use for such data. This representation has made it possible to programmatically integrate cellular networks as well as investigating them using the well-understood concepts of graph theory to predict their structural and dynamic properties. In this regard, it is essential to effectively query such integrated large networks to extract the sub-networks of interest with the help of efficient algorithms and software tools. Towards this goal, we have developed a querying framework along with a number of graph-theoretic algorithms from simple neighborhood queries to shortest paths to feedback loops, applicable to all sorts of graph-based pathway databases from PPIs to metabolic pathways to signaling pathways. These algorithms can also account for compound or nested structures present in the pathway data, and have been implemented within the querying components of Patika (Pathway Analysis Tools for Integration and Knowledge Acquisition) tools and have proven to be useful for answering a number of biologically significant queries for a large graph-based pathway database.
      Keywords
      Graph Algorithms
      Graph Querying
      Biological Pathways
      Pathway Databases
      Permalink
      http://hdl.handle.net/11693/14549
      Collections
      • Dept. of Computer Engineering - Master's degree 540
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy