Show simple item record

dc.contributor.authorHaldun M. Özaktaşen_US
dc.contributor.authorMendlovic, D.en_US
dc.date.accessioned2015-07-28T12:07:27Z
dc.date.available2015-07-28T12:07:27Z
dc.date.issued1994en_US
dc.identifier.issn0146-9592
dc.identifier.urihttp://hdl.handle.net/11693/13642
dc.description.abstractThe complex amplitude distributions on two spherical reference surfaces of given curvature and spacing are simply related by a fractional Fourier transform. The order of the fractional Fourier transform is proportional to the Gouy phase shift between the two surfaces. This result provides new insight into wave propagation and spherical mirror resonators as well as the possibility of exploiting the fractional Fourier transform as a mathematical tool in analyzing such systems.en_US
dc.language.isoEnglishen_US
dc.source.titleOptics Lettersen_US
dc.relation.isversionofhttp://dx.doi.org/10.1364/OL.19.001678en_US
dc.subjectEigenvaluesen_US
dc.subjectFourier transformsen_US
dc.subjectMirrorsen_US
dc.subjectPhase shiften_US
dc.subjectResonatorsen_US
dc.subjectSurfacesen_US
dc.subjectComplex amplitude distributionen_US
dc.subjectFractional fourier transformsen_US
dc.subjectFraunhofer diffractionen_US
dc.subjectHermite gaussian functionsen_US
dc.subjectSpherical mirror resonatorsen_US
dc.subjectLight propagationen_US
dc.subjectEigenfunctionsen_US
dc.titleFractional Fourier transform as a tool for analyzing beam propagation and spherical mirror resonatorsen_US
dc.typeArticleen_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.citation.spage1678en_US
dc.citation.epage1680en_US
dc.citation.volumeNumber19en_US
dc.citation.issueNumber21en_US
dc.identifier.doi10.1364/OL.19.001678en_US
dc.publisherOptical Society of Americaen_US
dc.contributor.bilkentauthorHaldun M. Özaktaş


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record