Iterative-improvement-based declustering heuristics for multi-disk databases

Date

2005

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
1
views
22
downloads

Citation Stats

Series

Abstract

Data declustering is an important issue for reducing query response times in multi-disk database systems. In this paper, we propose a declustering method that utilizes the available information on query distribution, data distribution, data-item sizes, and disk capacity constraints. The proposed method exploits the natural correspondence between a data set with a given query distribution and a hypergraph. We define an objective function that exactly represents the aggregate parallel query-response time for the declustering problem and adapt the iterative-improvement-based heuristics successfully used in hypergraph partitioning to this objective function. We propose a two-phase algorithm that first obtains an initial K-way declustering by recursively bipartitioning the data set, then applies multi-way refinement on this declustering. We provide effective gain models and efficient implementation schemes for both phases. The experimental results on a wide range of realistic data sets show that the proposed method provides a significant performance improvement compared with the state-of-the-art declustering strategy based on similarity-graph partitioning.

Source Title

Information Systems

Publisher

Elsevier

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English