Room temperature large-area nanoimprinting for broadband biomimetic antireflection surfaces

Date
2011
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Applied Physics Letters
Print ISSN
0003-6951
Electronic ISSN
Publisher
American Institute of Physics
Volume
99
Issue
18
Pages
183107-1 - 183107-2
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Ordered arrays of subwavelength hydrogen silsesquioxane (HSQ) nanorods on glass substrates are fabricated using room temperature nanoimprint lithography and anodized aluminum oxide membranes. Moth-eye type nanorod arrays exhibited superior omnidirectional antireflection characteristics in visible wavelengths. The ellipsometric measurements revealed that average specular reflection is remaining below 1% up to 55 degrees incidence angles. Transmission measurements at normal incidence resulted in significant increase in transmitted light intensity with respect to plain glass. Simulations showed that up to 99% transmission could be obtained from double sided tapered HSQ nanorod arrays on HSQ thin film and glass substrates. Achieving large-area, broadband and omnidirectional antireflective surfaces on glass pave the way for applications including photovoltaics. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3657766]

Course
Other identifiers
Book Title
Keywords
Citation
Published Version (Please cite this version)