• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Science
      • Department of Physics
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Science
      • Department of Physics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Amplified Spontaneous Emission and Lasing in Colloidal Nanoplatelets

      Thumbnail
      View / Download
      2.6 Mb
      Author
      Guzelturk, B.
      Kelestemur, Y.
      Olutas, M.
      Delikanli, S.
      Demir, Hilmi Volkan
      Date
      2014-07
      Source Title
      ACS Nano
      Print ISSN
      1936-0851
      Publisher
      American Chemical Society
      Volume
      8
      Issue
      7
      Pages
      6599 - 6605
      Language
      English
      Type
      Article
      Item Usage Stats
      156
      views
      123
      downloads
      Abstract
      Colloidal nanoplatelets (NPLs) have recently emerged as favorable light-emitting materials, which also show great potential as optical gain media due to their remarkable optical properties. In this work, we systematically investigate the optical gain performance of CdSe core and CdSe/CdS core/crown NPLs having different CdS crown size with one- and two-photon absorption pumping. The core/crown NPLs exhibit enhanced gain performance as compared to the core-only NPLs due to increased absorption cross section and the efficient interexciton funneling, which is from the CdS crown to the CdSe core. One- and two-photon absorption pumped amplified spontaneous emission thresholds are found as low as 41 μJ/cm2 and 4.48 mJ/cm2 , respectively. These thresholds surpass the best reported optical gain performance of the state-of-the-art colloidal nanocrystals (i.e., quantum dots, nanorods,etc.) emitting in the same spectral range as the NPLs. Moreover, gain coefficient of the NPLs is measured as high as 650 cm 1 , which is 4-fold larger than the best reported gain coefficient of the colloidal quantum dots. Finally, we demonstrate a two-photon absorption pumped vertical cavity surface emitting laser of the NPLs with a lasing threshold as low as 2.49 mJ/cm2 . These excellent results are attributed to the superior properties of the NPLs as optical gain media.
      Keywords
      Amplified Spontaneous Emission
      Colloidal nanoplatelets
      Vertical cavity surface-emitting Laser
      Optical gain
      Permalink
      http://hdl.handle.net/11693/13226
      Published Version (Please cite this version)
      http://dx.doi.org/10.1021/nn5022296
      Collections
      • Department of Electrical and Electronics Engineering 3597
      • Department of Physics 2329
      • Institute of Materials Science and Nanotechnology (UNAM) 1831
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy