Show simple item record

dc.contributor.authorMutlugun, E.en_US
dc.contributor.authorHernandez Martinez, P. L.en_US
dc.contributor.authorEroglu, C.en_US
dc.contributor.authorCoskun, Y.en_US
dc.contributor.authorErdem, T.en_US
dc.contributor.authorSharma, V. K.en_US
dc.contributor.authorUnal, E.en_US
dc.contributor.authorPanda, S. K.en_US
dc.contributor.authorHickey, S. G.en_US
dc.contributor.authorGaponik, N.en_US
dc.contributor.authorEychmuller, A.en_US
dc.contributor.authorDemir, H. V.en_US
dc.date.accessioned2015-07-28T12:05:05Z
dc.date.available2015-07-28T12:05:05Z
dc.date.issued2012en_US
dc.identifier.issn1530-6984
dc.identifier.urihttp://hdl.handle.net/11693/13200
dc.description.abstractWe propose and demonstrate the fabrication of flexible, freestanding films of InP/ZnS quantum dots (QDs) using fatty acid ligands across very large areas (greater than 50 cm x 50 cm), which have been developed for remote phosphor applications in solid-state lighting. Embedded in a poly(methyl methacrylate) matrix, although the formation of stand alone films using other QDs commonly capped with trioctylphosphine oxide (TOPO) and oleic acid is not efficient, employing myristic acid as ligand in the synthesis of these QDs, which imparts a strongly hydrophobic character to the thin film, enables film formation and ease of removal even on surprisingly large areas, thereby avoiding the need for ligand exchange. When pumped by a blue LED, these Cd-free QD films allow for high color rendering, warm white light generation with a color rendering index of 89.30 and a correlated color temperature of 2298 K. In the composite film, the temperature-dependent emission kinetics and energy transfer dynamics among different-sized InP/ZnS QDs are investigated and a model is proposed. High levels of energy transfer efficiency (up to 80%) and strong donor lifetime modification (from 18 to 4 ns) are achieved. The suppression of the nonradiative channels is observed when the hybrid film is cooled to cryogenic temperatures. The lifetime changes of the donor and acceptor InP/ZnS QDs in the film as a result of the energy transfer are explained well by our theoretical model based on the exciton-exciton interactions among the dots and are in excellent agreement with the experimental results. The understanding of these excitonic interactions is essential to facilitate improvements in the fabrication of photometrically high quality nanophosphors. The ability to make such large-area, flexible, freestanding Cd-free QD films pave the way for environmentally friendly phosphor applications including flexible, surface-emitting light engines.en_US
dc.language.isoEnglishen_US
dc.source.titleNano Lettersen_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/nl301198ken_US
dc.subjectSemiconductor Quantum Dotsen_US
dc.subjectLarge-area Freestanding Filmsen_US
dc.subjectExcitonsen_US
dc.subjectNonradiative Energy Transferen_US
dc.subjectWhite Light Generationen_US
dc.subjectRemote Phosphorsen_US
dc.titleLarge-Area (over 50 cm × 50 cm) Freestanding Films of Colloidal InP/ZnS Quantum Dotsen_US
dc.typeArticleen_US
dc.departmentDepartment of Physicsen_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentInstitute of Materials Science and Nanotechnologyen_US
dc.citation.spage3986en_US
dc.citation.epage3993en_US
dc.citation.volumeNumber12en_US
dc.citation.issueNumber8en_US
dc.identifier.doi10.1021/nl301198ken_US
dc.publisherAmerican Chemical Societyen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record