• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Institute of Materials Science and Nanotechnology (UNAM)
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Institute of Materials Science and Nanotechnology (UNAM)
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Electron-phonon interaction in bulk layered graphene and its oxide in the presence of alcohols in a device: Equilibrium molecular doping

      Thumbnail
      View / Download
      1.4 Mb
      Author
      Vempati, S.
      Celebioglu, A.
      Uyar, T.
      Date
      2014-08-22
      Source Title
      Journal of Materials Chemistry C
      Print ISSN
      2050-7526
      Publisher
      The Royal Society of Chemistry
      Volume
      2
      Issue
      40
      Pages
      8585 - 8592
      Language
      English
      Type
      Article
      Item Usage Stats
      123
      views
      91
      downloads
      Abstract
      We report on electron phonon interactions in bulk layered graphene (GRA) and its oxide (GO) under bias when exposed to 1° or 2° alcohol vapors, where we have focused on the change of Raman intensity of G and D bands as a function of the bias across the device. In addition to the softening of phonons we have observed a systematic variation in the intensity for D and G bands which is directly related to guest molecules and intrinsic surface nature of GRA and GO. Although the guest molecules withdraw electrons from GRA or GO, the intrinsic nature of the host material has caused mutually contrasting behaviour in IV-characteristics, where the conductance of the former decreases while it increases for the latter. The results from IV-spectra and the intensity maps of D and G bands are juxtaposed and the changes are analyzed with respect to surface and functional group interactions. In the context of doping, it is interesting to see that under equilibrium molecular charge transfer (top-gate like), the intensity ratios of 2D and G bands are not constant in contrast to a previous study [Phys. Rev. B., 2009, 80, 165413] in which such a ratio is invariant in the field effect configuration. © the Partner Organisations 2014.
      Keywords
      Molecular doping
      Permalink
      http://hdl.handle.net/11693/12782
      Published Version (Please cite this version)
      http://dx.doi.org/10.1039/C4TC01694G
      Collections
      • Institute of Materials Science and Nanotechnology (UNAM) 1775
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy